One of the functions of Al-Shanasheel was to cool the air, but they could not compete with the Evaporative coolers, As Al-Shanasheel were a sign of luxury and wealth in Arab societies and were only built in homes of wealthy families, they are more expensive than the evaporative coolers, depending on the level of the decoration and the sculpting used to create them aesthetically, where People replaced them with evaporative coolers for their low cost, and higher cooling efficiency. One of the reasons for the disappearance of Al-Shanasheel is the absence of the functional need for them, in exchange for the high cost of construction. The diminished role of Al-Shanasheel in the contemporary urban scene, although they are one of the most famous elements of the traditional architecture in Iraq in particular and their disappearance as architectural elements of the traditional urban scene, because of its inefficiency in air cooling. The reason for the failure of the environmental efficiency of Al-Shanasheel is because there are no attempts to raise their environmental efficiency and replace them with electrical evaporative coolers. That is the research problem. So the research aimed to revive Al-Shanasheel as environmental and aesthetic elements in the urban scene by creating "The Electric Shanshool" to revive them in the urban scene. The research assumed the possibility of raising the efficiency of Al-Shanasheel in cooling the air by developing the way they work, by exploiting contemporary technologies and thus the possibility of returning them to the urban scene as dual-function elements (aesthetically and environmentally). The research has made it possible to revitalize the environmental function of Al-Shanasheel, by presenting an innovative model of electric Shanshool that cools the air of the room with the same efficiency of evaporative air cooler, while preserving the beauty of Al-Shanshool as an aesthetic and heritage element in the facades of the traditional urban sc
A simple, fast, inexpensive and sensitive method has been proposed to screen and optimize experimental factors that effecting the determination of phenylephrine hydrochloride (PHE.HCl) in pure and pharmaceutical formulations. The method is based on the development of brown-colored charge transfer (CT) complex with p-Bromanil (p-Br) in an alkaline medium (pH=9) with 1.07 min after heating at 80 °C. ‘Design of Experiments’ (DOE) employing ‘Central Composite Face Centered Design’ (CCF) and ‘Response Surface Methodology’ (RSM) were applied as an improvement to traditional ‘One Variable at Time’ (OVAT) approach to evaluate the effects of variations in selected factors (volume of 5×10-3 M p-Br, heating time, and temperature) on
... Show MoreNew simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l. mole1. cm-1 and Sandel’s index 0.0449 μg. cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg. ml-1 with relative standard deviation percent (RSD%) ranged between 0.26-4.71% and accuracy, expressed by recovery percent, 95-106% for five
... Show MoreThis research deals with and which was entitled: relationship between psychological time and elements of filming expression (one-day event filmsas an example). It is about the relationship of psychological time (internal) with the elements of filming expression and how the time affected when using these elements in terms of its deceleration or acceleration. In particular, this research focus on elements that slow down time or stops it when using these elements. As one day time is short and heavy at the time of spectators in terms of the large number of film events which makes the viewer runs out of breath to understand the nature of those events and then identify the causes and consequences, as they occur in a short time (one day time) a
... Show MoreIn this study, a novel application of lab-scale dual chambered air-cathode microbial fuel cell (MFC) has been developed for simultaneous bio-treatment of real pharmaceutical wastewater and renewable electricity generation. The microbial fuel cell (MFC) was provided with zeolite-packed anodic compartment and a cation exchange membrane (CEM) to separate the anode and cathode. The performance of the proposed MFC was evaluated in terms of COD removal and power generation based on the activity of the bacterial consortium in the biofilm mobilized on zeolite bearer. The MFC was fueled with real pharmaceutical wastewater having an initial COD concentration equal to 800 mg/L and inoculated with anaerobic aged sludge. Results demo
... Show MoreTwo field experiments were conducted during the spring season 2020 in Karbala governorate to study the effect of irrigation systems, irrigation intervals, biofertilizers and polymers on some characteristics of vegetative growth and potato production. The results showed that there were significant differences in the values of the average plant height due to the effect of the double interference between the irrigation system and the improvers, The height of potato plant under any irrigation system was superior when adding conditioners compared to the control treatment, as it reached 48.56, 58.00 and 64.33cm when adding polymer, biofertilizer, and polymers+ biofertilizers, respectively compared with the control treatment of 44.64cm in the surf
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreObjectives The gold standard in the field of periodontal research currently is to find a valid biomarker that can reliably be used for diagnosing periodontal diseases. Given the limitations of the current diagnostic tools that stall to predict susceptible individuals and determine whether active tissue destruction is occurring, there is an increased urge to develop alternative diagnostic techniques that would compensate for the problems inherited in these available methods, such as measuring levels of biomarkers present in oral fluids such as saliva; so the aim of this study was to determine the diagnostic potential of interleukin-17 (IL-17) and IL-10 to differentiate periodontal health