Concrete filled steel tube (CFST) columns are being popular in civil engineering due to their superior structural characteristics. This paper investigates enhancement in axial behavior of CFST columns by adding steel fibers to plain concrete that infill steel tubes. Four specimens were prepared: two square columns (100*100 mm) and two circular columns (100 mm in diameter). All columns were 60 cm in length. Plain concrete mix and concrete reinforced with steel fibers were used to infill steel tube columns. Ultimate axial load capacity, ductility and failure mode are discussed in this study. The results showed that the ultimate axial load capacity of CFST columns reinforced with steel fibers increased by 28% and 20 % for circular and square columns, respectively. Also, the circular CFST columns exhibited better ductility than the square CFST columns due to better concrete confinement. Circular and square CFST columns with steel fibers showed improved ductility by 16.3% and 12%, respectively. The failure mode of the square CFST columns were local buckling which occurred near the end of columns, while, for the circular CFST columns, local buckling occurred near the mid-height. Also, the study involved sectional analysis that captured the behavior of CFST columns very well. The sectional analysis showed that increasing steel fiber content to 2% increased the axial load capacity by 51 and 38% for circular and square CFST columns, respectively. Furthermore, sectional analysis showed that doubling section size increased axial load capacity by approximately 4 and 5 times for circular and square columns, respectively.
Jet grouting is one of the most widely applied soil improvement techniques. It is suitable for most geotechnical problems, including improving bearing capacity, decreasing settlement, forming seals, and stabilizing slopes. One of the difficulties faced by designers is determining the strength and geometry of elements created using this method. Jet grouted soil-cement columns in soil are a complicated issue because they are dependent on a number of parameters such as soil type, grout and water flow rate, rotation and lifting speed of monitor, nozzle jetting force, and water to cement ratio of slurry. This paper discusses the effect of the water-cement ratio on the physical and mechanical characteristics of soilcrete. In t
... Show MoreShallow foundations have been commonly used to transfer load to soil layer within the permissible limits of settlement based on the bearing capacity of the soil. For most practical cases, the shape of the shallow foundation is of slight significance. Also, friction resistance forces in the first layers of soils are negligible due to non-sufficient surrounding surface area and compaction conditions. However, the bearing capacity of a shallow foundation can be increased by several techniques. Geocell is one of the geosynthetic tool applied mainly to reinforce soil. This study presents a numerical approach of honeycombed geocell steel panels reinforcing the sandy soil under shallow foundation, and several parameters are investigated such as th
... Show MoreA prey-predator interaction model has been suggested in which the population of a predator consists of a two-stage structure. Modified Holling's disk equation is used to describe the consumption of the prey so that it involves the additional source of food for the predator. The fear function is imposed on prey. It is supposed that the prey exhibits anti-predator behavior and may kill the adult predator due to their struggle against predation. The proposed model is investigated for existence, uniqueness, and boundedness. After determining all feasible equilibrium points, the local stability analyses are performed. In addition, global stability analyses for this model using the Lyapunov method are investigated. The chance of occurrence of loc
... Show MoreIn this work, some mechanical properties of the polymer coating were improved by preparing a hybrid system containing Graphene (GR) of different weight percentages (0.25, 0.5, 1, and 2wt%) with 5wt% carbon fibres (CF) and added to a polymer coating by using casting method. The properties were improved as GR was added with further improvement on adding 5wt% of CF. The impact strength of acrylic polymer with GR increases with increasing weight ratio of GR; maximum value was obtained when the polymer coating was incorporated with 1wt% GR and 5wt% CF. The impact strength of acrylic polymer with GR and GR/CF composites incorporated with GR at 1wt% and CF at 5wt%. Hardness increase with increasing weight ratio of Gr and a significant imp
... Show MoreIn this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fa
... Show MoreIn this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show More