نتيجة للتطورات الأخيرة في أبحاث الطرق السريعة بالإضافة إلى زيادة استخدام المركبات، كان هناك اهتمام كبير بنظام النقل الذكي الأكثر حداثة وفعالية ودقة (ITS) في مجال رؤية الكمبيوتر أو معالجة الصور الرقمية، يلعب تحديد كائنات معينة في صورة دورًا مهمًا في إنشاء صورة شاملة. هناك تحدٍ مرتبط بالتعرف على لوحة ترخيص السيارة (VLPR) بسبب الاختلاف في وجهة النظر، والتنسيقات المتعددة، وظروف الإضاءة غير الموحدة في وقت الحصول على الصورة والشكل واللون، بالإضافة إلى الصعوبات مثل ضعف دقة الصورة ، الصورة الباهتة ، الإضاءة السيئة، التباين المنخفض، يجب التغلب عليها. اقترحت هذه الورقة نموذجًا باستخدام تعديل الذاكرة الترابطية ثنائية الاتجاه (MBAM)، وهي نوع واحد من الذاكرة الترابطية غير المتجانسة، وتعمل MBAM على مرحلتين)مرحلتي التعلم والتقارب) للتعرف على اللوحة، ويمكن لهذا النموذج المقترح التغلب على تلك الصعوبات بسبب قدرة الذاكرة الترابطية لـ MBAM على قبول الضوضاء وتمييز الصور المشوهة، وكذلك سرعة عملية الحساب نظرًا لصغر حجم الشبكة. نتيجة دقة تحديد منطقة اللوحة هي 99.6٪، ودقة تجزئة الأحرف 98٪، والدقة المحققة للتعرف على الأحرف هي100 ٪ في ظروف مختلفة.
There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreAudio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some
... Show MoreModify Multi-Connect Architecture (MMCA) associative memory
In this study, an analytical model depending on experimental results for InPInGaAs
avalanche photodiode at low bias was presented and the characteristics of
gain for this photodiode were determined directly by the impulse response. The
model have considered the most important mechanisms contributing the
photocurrent, they are trapping, photogeneration in the undepleted region and
charge-carriers velocity due to the built-in electrical field. Also, the bandwidth
was determined as a function to the total gain of photodiode and it was mainly
determined by diffusion and trapping processes at low gain regarding to the multilayer
structure considered in this study
Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show More