Background: Breast cancer is a highly heterogeneous disease globally. Trace elements such as copper and zinc have a role in many biochemical reactions as micro source, their metabolism is profoundly altered in neoplastic diseases especially breast cancer which is ranked as the first of female cancersObjective: The aim of the present study is to study the impact of body mass index and some trace elements in Iraqi women with breast cancer.Patients and methods: The group of the study consisted of 25 breast cancer patients; their age range was (25–65) years recruited from the Al-Kadhimia Teaching Hospital and 25 apparently healthy women age matched, over a period of 6 months from January 2015 until June 2015. After the diagnosis was made using a histopathological examination for the malignant tumor, blood was obtained from all patients and control, centrifuged and serum samples without blood hemolysis were separated and stored at – 20 until assayed.Results: There was a significant increase in body mass index in breast cancer women as compared to control group. Copper and zinc levels were significantly different between the patients and controls group with higher level of copper, zinc. Also copper/zinc ratio in patients was higher than in the control group.Conclusions: The excess copper and zinc in breast cancer women in comparison to healthy control highlights the role of these trace elements in the initiation or promotion of breast cancer. It is recommended to use trace elements and the copper/zinc ratio as biomarkers for breast cancer disease and its progression.
Rapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show More
This study focuses on studying the effect of reinforced steel in detail, and steel reinforcement (tensile ratio, compression ratio, size, and joint angle shape) on the strength of reinforced concrete (compressive strength) Fc' and searching for the most accurate details of concrete divisions, their behavior, and corner resistance of reinforced concrete joint. The comparison of this paper with previous studies, especially in the studied properties. The conclusions of the chapter are summarized that these effects had a clear effect and a specific effect on the behavior and resistance of the reinforced concrete corner joints under the negative moments and under their influence and the resulting stress conditions. The types of defects that can
... Show MoreThe species of Opilio kakunini Snegovaya, Cokendolpher & Mozaffarian, 2018 was recorded for the first time in Iraq; as well as to four species belonging to this order which were recorded previously. In this paper, we added a new species to the checklist of Iraqi opilionid fauna with a description of the most important characteristics, along with genitalia, for both males and females are presented with digital photographs. Specimens of males and females were collected from Al- Rifai district northern of Dhi-Qar Province, southern of Iraq.
This work studied the facilitation of the transportation of Sharqi Baghdad heavy crude oil characterized with high viscosity 51.6 cSt at 40 °C, low API 18.8, and high asphaltenes content 7.1 wt.%, by reducing its viscosity from break down asphaltene agglomerates using different types of hydrocarbon and oxygenated polar solvents such as toluene, methanol, mix xylenes, and reformate. The best results are obtained by using methanol because it owns a high efficiency to reduce viscosity of crude oil to 21.1 cSt at 40 °C. Toluene, xylenes and reformate decreased viscosity to 25.3, 27.5 and 28,4 cSt at 40 °C, respectively. Asphaltenes content decreased to 4.2 wt. % by using toluene at 110 °C. And best improvement in API of the heavy crude o
... Show MoreThe compressive residual stresses generated by shot peening, is increased in a direct proportional way with shot peening time (SPT). For each metal, there is an optimum shot peening time (O.S.T) which gives the optimum fatigue life. This paper experimentally studied to optimize shot peening time of aluminium alloy 6061-T651 as well as using of and analysis of variance (ANOVA).
Two types of fatigue test specimens’ configuration were used, one without notch (smooth) and the other with a notch radius (1,25mm), each type was shot peened at different time. The (O.S.T) was experimentally estimated to be 8 minutes reaching the surface stresses at maximum peak of -184.94 MPa.
A response surface methodology (RSM) is presen
... Show MoreHypothesis CO2 geological storage (CGS) involves different mechanisms which can store millions of tonnes of CO2 per year in depleted hydrocarbon reservoirs and deep saline aquifers. But their storage capacity is influenced by the presence of different carboxylic compounds in the reservoir. These molecules strongly affect the water wetness of the rock, which has a dramatic impact on storage capacities and containment security. However, precise understanding of how these carboxylic acids influence the rock’s CO2-wettability is lacking. Experiments We thus systematically analysed these relationships as a function of pressure, temperature, storage depth and organic acid concentrations. A particular focus was on identifying organic acid conce
... Show MoreThe presence of antibiotic residues such as ciprofloxacin (CIPR) in an aqueous environment is dangerous when their concentrations exceed the allowable. Therefore, eliminating these residues from the wastewater becomes an essential issue to prevent their harm. In this work, the potential of efficient adsorption of ciprofloxacin antibiotics was studied using eco-friendly ZSM-5 nanocrystals‑carbon composite (NZC). An inexpensive effective natural binder made of the sucrose-citric acid mixture was used for preparing NZC. The characterization methods revealed the successful preparation of NZC with a favorable surface area of 103.739 m2/g, and unique morphology and functional groups. Investigating the ability of NZC for adsorbing CIPR antibioti
... Show More