Background: The efficacy of educational strategies is crucial for nursing students to competently perform pediatric procedures like nasogastric tube insertion. Specific Background: This study evaluates the effectiveness of simulation, blended, and self-directed learning strategies in enhancing these skills among nursing students. Knowledge Gap: Previous research lacks a comprehensive comparison of these strategies' impacts on skill development in pediatric nursing contexts. Aims: The study aims to assess the effectiveness of different educational strategies on nursing students' ability to perform pediatric nasogastric tube insertions. Methods: A pre-experimental design was employed at the College of Nursing, University of Baghdad, involving 60 students divided into three groups. Data were collected via an observational checklist from October to December 2023 and analyzed using SPSS. Results: Significant improvements in students' skills were observed across all groups. Simulation strategy showed highly significant differences with p-values of .001 and large effect sizes (Partial Eta Squared: .887, .902, .582). Blended strategy also demonstrated significant results with p-values of .001 and large effect sizes (Partial Eta Squared: .813, .936, .883). The self-directed strategy was similarly effective, with p-values of .001 and large effect sizes (Partial Eta Squared: .871, .739, .667). Descriptive statistics revealed a notable increase in mean scores in post-tests, indicating the effectiveness of these strategies. Novelty: This study uniquely compares the effectiveness of simulation, blended, and self-directed learning strategies, providing comprehensive insights into their impacts on pediatric nursing education. Implications: The findings underscore the importance of incorporating diverse learning strategies in nursing curricula to enhance practical skills, suggesting that a combination of these methods could be most beneficial for student learning and competence in clinical settings. Highlights: Effective Strategies: Simulation, blended, and self-directed learning enhance pediatric nursing skills. Significant Improvement: All methods showed highly significant skill development with large effect sizes. Unique Comparison: The study provides valuable insights for nursing education curricula. Keywords: Nursing education, pediatric skills, nasogastric tube insertion, simulation learning, blended learning
The aim of this study was to Identifying The Effect of using Linear programming and Branching programming by computer in Learning and Retention of movement concatenation(Linkwork) in parallel bars in Artistic Gymnastics. The searchers have used the experimental method. The search subject of this article has been taken (30) male - students in the second class from the College of Physical Education/University of Baghdad divided into three groups; the first group applied linear programming by computer, and the second group has been applicated branching programming by computer, while precision group used traditional method in the college. The researchers concluded the results by using the statistical bag for social sciences (spss) such as both
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
Personalized Medicine represents a recent revolution in healthcare practice, focusing on tailoring different therapies to be precise for a specific individual; this is aided by exploring the number of genetic predispositions and lifestyle choices that fit each individual. In this article, the authors utilize and gather recent literature and opinions to discuss the impact of personalized medicine on chronic disease management and patient quality of life. Additional attention is paid to limits and possible ethical issues. Chronic diseases such as Hypertension, Diabetes, and chronic kidney diseases adversely affect multiple health indicators, including Quality of Life (QoL) and well-being. This will have additional impacts on physical
... Show MoreAbstract
The current research aims to identify mental health and its role in promoting self-confidence and positive behavior of female university students. The researcher adopted the descriptive analytical approach in this research. The researcher depended on the availability of sources and references, literature, and previous field studies to analyze and study all aspects related to mental health and its role in promoting self-confidence and positive behavior of university students and then expand its importance and identify the areas of mental health, self-confidence, positive behavior, and university. The second chapter included the concept of mental health, the importance of the study, the most important factors of health and psyc
Abstract: Despite the distinct features of the continuous wave (CW) Terahertz (THz) emitter using photomixing technique, it suffers from the relatively low radiation output power. Therefore, one of effective ways to improve the photomixer emitter performance was using nanodimensions electrodes inside the optical active region of the device. Due to the nanodimension sizes and good electrical conductivity of silver nanowires (Ag-NWs), they have been exploited as THz emitter electrodes. The excited surface plasmon polariton waves (SPPs) on the surface of nanowire enhances the incident excitation signal. Therefore, the photomixer based Ag-NW compared to conventional one significantly exhibits higher THz output signal. In thi
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show More