This paper introduces a relation between resultant and the Jacobian determinant
by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) variables. This leads us to study the results of the type: , and use this relation to attack the Jacobian problem. The last section shows our contribution to proving the conjecture.
In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
In parallel with the shell model using the harmonic oscillator's single-particle wave functions, the Hartree-Fock approximation was also used to calculate the neutron skin thickness, the mirror charge radii, and the differences in proton radii for 13O-13B and 13N-13C mirror nuclei. The calculations were done for both mirror nuclei in the psdpn model space. Depending on the type of potential used, the calculated values of skin thickness are affected. The symmetry energy and the symmetry energy's slope at nuclear saturation density were also determined, and the ratio of the density to the saturation density of nuclear matter and the symmetry energy has a nearly linear correlation. The mirror ener
... Show MoreLead remediation was achieved using simple cost, effective and eco-friendly way from industrial wastewater. Phragmitesaustralis (P.a) (Iraqi plant), was used as anovel biomaterial to remove lead ions from synthesized waste water. Different parameters which affected on adsorption processes were investigated like adsorbent dose, pH, contact time, and adsorbent particle size, to reach the optimized conditions (maximum adsorption). The adsorption of Pb (?) on (P.a) involved fast and slow process as a mechanism steps according to obey two theoretical adsorption isotherms; Langmuir and Freundlich. The thermos dynamic adsorption parameters were evaluated also. The (?H) obtained positive value that meanes adsorption of lead ions was an endothermic
... Show MoreLead remediation was achieved using simple cost, effective and eco-friendly way from industrial wastewater. Phragmitesaustralis (P.a) (Iraqi plant), was used as anovel biomaterial to remove lead ions from synthesized waste water. Different parameters which affected on adsorption processes were investigated like adsorbent dose, pH, contact time, and adsorbent particle size, to reach the optimized conditions (maximum adsorption). The adsorption of Pb (?) on (P.a) involved fast and slow process as a mechanism steps according to obey two theoretical adsorption isotherms; Langmuir and Freundlich. The thermos dynamic adsorption parameters were evaluated also. The (?H) obtained positive value that meanes adsorption of lead ions was an endothermic
... Show MoreMultiplicative inverse in GF (2 m ) is a complex step in some important application such as Elliptic Curve Cryptography (ECC) and other applications. It operates by multiplying and squaring operation depending on the number of bits (m) in the field GF (2 m ). In this paper, a fast method is suggested to find inversion in GF (2 m ) using FPGA by reducing the number of multiplication operations in the Fermat's Theorem and transferring the squaring into a fast method to find exponentiation to (2 k ). In the proposed algorithm, the multiplicative inverse in GF(2 m ) is achieved by number of multiplications depending on log 2 (m) and each exponentiation is operates in a single clock cycle by generating a reduction matrix for high power of two ex
... Show MoreIn this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.