Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This classifier has proved to be the best compared to the others with two features, DenseNet-201 and ResNet-18, along with WNN, NB, and SVM (cubic and linear) kernels. MSC 2010: 68T45, 68U10, 65G20
The aim of the research is to investigate the effect of cold plasma on the bacteria grown on texture of sesame paste in its normal particle and nano particle size. Starting by using the image segmentation process depending on the threshold method, it is used to get rid of the reflection of the glass slides on which the sesame samples are placed. The classification process implemented to separate the sesame paste texture from normal and abnormal texture. The abnormal texture appears when the bacteria has been grown on the sesame paste after being left for two days in the air, unsupervised k-mean classification process used to classify the infected region, the normal region and the treated region. The bacteria treated with cold plasma, t
... Show MoreAchieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o
... Show MoreThis paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MoreThe State company for vegetable oils industry one of the most dynamic
companies in the Iraqi economy and is one of the companies manufacturing(food) that takes astrategic dimension and production within the concept of food security, this as well as to reduce dependence on imports and operation of national manpower.This study aims to describe the performance of the State company for vegetable oils industry for the period (2003-2007) which was characterized by economic and security instability of the country and give an accurate picture of their efficiency and their capacity to produce during this Period.
The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreThe research aims at the identity of the accounting information and its characteristics, and then to study the possibility of using accounting information in rationalizing the decisions of capital expenditure. The study relied upon the descriptive analytical approach it is suitable to the nature of this study, the hypotheses of the study were tested by using a number of statistical methods by relying on statistical package program (SPSS), and the research concluded that the companies listed in Khartoum Stock Exchange using accounting information in the comparison between investment alternatives available and estimating the number of years required to recover of the investment cost, the challenges that cause weakness in using the
... Show MoreThis study aim to identify the concept of web based information systems since its one of the important topics that is usually omitted by our organizations, in addition to, designing a web based information system in order to manage the customers data of Al- Rasheed bank, as a unified information system that is specialized to the banking deals of the customers with the bank, and providing a suggested model to apply the virtual private network as a tool that is to protect the transmitted data through the web based information system.
This study is considered important because it deals with one of the vital topics nowadays, namely: how to make it possible to use a distributed informat
... Show More