Thin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin films at different operational temperatures. We have found that the NH3 sensor has its highest sensitivity of 33.3% when manufactured with a power setting of 50 W at room substrate temperature (RT) and an operating temperature of 200°C. It also has a rapid response time of 10 seconds when utilizing a substrate temperature of 150°C. Additionally, the sample prepared with a substrate temperature of 100°C has the quickest recovery time, recorded at 30 seconds
AgInSe2 (AIS) thin films solar cell involving of n-type AgInSe2 and Si of p-type substrate by using thermal evaporation method. The influence of annealing of the preparation AgInSe2 were considered to find the best properties of solar device. Thin film AIS have been deposited under the vacuum of 1.5*10-6 Torr with (400) nm thickness at R.T and annealing temperatures (473,573) K. Polycrystalline tetragonal structure for AIS thin films from XRD and increasing of surface roughness from AFM, energy gap values decreasing with increasing annealing temperatures, all films were negative type, I-V characteristics show increasing of efficiency with increasing of annealing temperatures.
Chemical spray pyrolysis technique was used at substrate temperature 250 ˚C with annealing temperature at 400 ˚C (for 1hour) to deposition tungsten oxide thin film with different doping concentration of Au nanoparticle (0, 10, 20, 30 and 40)% wt. on glass substrate with thickness about 100 nm. The structural, optical properties were investigated. The X-ray diffraction shows that the films at substrate temperature (250 ˚C) was amorphous while at annealing temperature have a polycrystalline structure with the preferred orientation of (200), all the samples have a hexagonal structure for WO3 and Au gold nanoparticles have a cubic structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films. The optical pr
... Show MoreNanofluid treatment of oil reservoirs is being developed to enhance oil recovery and increase residual trapping capacities of CO2 at the reservoir scale. Recent studies have demonstrated good potential for silica nanoparticles for enhanced oil recovery (EOR) at ambient conditions. Nanofluid composition and exposure time have shown significant effects on the efficiency of EOR. However, there is a serious lack of information regarding the influence of temperature on nanofluid performance; thus the effects of temperature, exposure time and particle size on wettability alteration of oil-wet calcite surface were comprehensively investigated; moreover, the stability of the nanofluids was examined. We found that nanofluid treatment is more efficie
... Show MoreAlloy of (HgTe) has been prepared succesful in evacuated qurtz ampoule at pressure 4×10-5torr, and melting temperature equal to 823K for five days. Thin films of HgTe of thickness 1μm were deposited on NaCl crystal by thermal evaporation technique at room temperature under vacuum about 4×10-5torr as well as investiagtion in the optical porperties included (absorption coefficient , energy gap) of HgTe films and The optical measurements showed that HgTe film has direct energy gap equal to 0.05 eV. The optical constants (n, k, εr, εi) have been measured over will range (6-28)μm.
Understanding how wing geometry and internal structural configuration influence vibration behavior is essential for ensuring the aeroelastic stability and structural integrity of modern aircraft. This study presents a comprehensive numerical investigation of the modal and deflection characteristics of aircraft wings with different geometries (symmetric tapered planform and swept-back) and spar configurations (box and I-section) using the finite element method (FEM) in ANSYS Mechanical APDL R.15. Six NACA airfoil profiles (0024, 2411, 2416, 2424, 4412, and 4421) with angle of attack 9° under 50 m/s speed and 1,100 kg pay load were analyzed under identical aerodynamic and material conditions using linear elasti
... Show MoreResults of a study of alloys and films with various Pb content have been reported and discussed. Films of of thickness 1.5
The advancements in horizontal drilling combined with hydraulic fracturing have been historically proven as the most viable technologies in the exploitation of unconventional resources (e.g., shale and tight gas reservoirs). However, the number of fractures, well timing, and arrangement pattern can have a significant impact on the project economy. Therefore, such design and operating parameters need to be efficiently optimized for obtaining the best production performance from unconventional gas reservoirs. In this study, the process of selecting the optimal number of fractures was conducted on a section of a tight gas reservoir model (based on data from the Whicher Range (WR) tight gas field in Western Australia). Then, the optimal number
... Show MoreIn this work, HgBa2CaCu2-xSbxO8+δ compounds with (x = 0.2, 0.4, 0.6 and 0.8) have been prepared by the solid-state reaction method. Structural, morphological, and electrical properties were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Using the 4-probe technique to study the effect of antimony-substitution for Copper on the electrical properties of HgBa2CaCu2-xSbxO8+δ (Hg-1212) phase was investigated by measuring the resistivity as a function of temperature. Results indicate that the addition of antimony (Sb) increases the volume fraction of the phase and changes the superconducting transition temperature Tc of the superconductor to a normal state. The dielectric loss factor and ac
... Show MoreThis research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi
... Show More