Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a crucial technique in signal preprocessing, serving as key descriptors for signal analysis and recognition. OMs are obtained by the projection of orthogonal polynomials (OPs) onto the signal domain. However, when dealing with 3D signals, the traditional approach of convolving kernels with the signal and computing OMs beforehand significantly increases the computational cost of computer vision algorithms. To address this issue, this paper develops a novel mathematical model to embed the kernel directly into the OPs functions, seamlessly integrating these two processes into a more efficient and accurate approach. The proposed model allows the computation of OMs for smoothed versions of 3D signals directly, thereby reducing computational overhead. Extensive experiments conducted on 3D objects demonstrate that the proposed method outperforms traditional approaches across various metrics. The average recognition accuracy improves to 83.85% when the polynomial order is increased to 10. Experimental results show that the proposed method exhibits higher accuracy and lower computational costs compared to the benchmark methods in various conditions for a wide range of parameter values.
Biscuits are a global snack due to their convenience, variety, and durability. Biscuits with nutritious ingredients are in demand as customers become more health conscious. This change led to interest about utilizing agricultural by-products to enhance the nutritional value of widely consumed foods. Mango (Mangifera indica L.), a frequently cultivated tropical fruit, produces vital by-products during its processing, mainly comprising peels and kernels. The by-products, comprising around 35–60% of the mango fruit's weight, are high in bioactive compounds including dietary fiber, polyphenols, carotenoids, and essential fatty acids. Mango peels and kernels, even with their nutritional potential, frequently neglected, resulting in ris
... Show MoreBiscuits are a global snack due to their convenience, variety, and durability. Biscuits with nutritious ingredients are in demand as customers become more health conscious. This change led to interest about utilizing agricultural by-products to enhance the nutritional value of widely consumed foods. Mango (Mangifera indica L.), a frequently cultivated tropical fruit, produces vital by-products during its processing, mainly comprising peels and kernels. The by-products, comprising around 35–60% of the mango fruit's weight, are high in bioactive compounds including dietary fiber, polyphenols, carotenoids, and essential fatty acids. Mango peels and kernels, even with their nutritional potential, frequently neglected, resulting in ris
... Show MoreThese days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce
... Show MoreIn this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade
... Show MoreThis study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.
The propagation of laser beam in the underdense deuterium plasma has been studied via computer simulation using the fluid model. An appropriate computer code “HEATER” has been modified and is used for this purpose. The propagation is taken to be in a cylindrical symmetric medium. Different laser wavelengths (1 = 10.6 m, 2 = 1.06 m, and 3 = 0.53 m) with a Gaussian pulse type and 15 ns pulse widths have been considered. Absorption energy and laser flux have been calculated for different plasma and laser parameters. The absorbed laser energy showed maximum for = 0.53 m. This high absorbitivity was inferred to the effect of the pondermotive force.
Compression is the reduction in size of data in order to save space or transmission time. For data transmission, compression can be performed on just the data content or on the entire transmission unit (including header data) depending on a number of factors. In this study, we considered the application of an audio compression method by using text coding where audio compression represented via convert audio file to text file for reducing the time to data transfer by communication channel. Approach: we proposed two coding methods are applied to optimizing the solution by using CFG. Results: we test our application by using 4-bit coding algorithm the results of this method show not satisfy then we proposed a new approach to compress audio fil
... Show MoreWith a descriptive and analytical approach, it discusses the concept of phenomenology as an approach to seeing the aesthetics of ugliness as one of the concepts associated with the aesthetic experience in contemporary art designs, as it is the result of communication between artistic production and the recipient, which leads to creating a state of aesthetic pleasure. A phenomenological method is used to uncover the aesthetics of ugly and to connect ugliness and beauty since ugliness in aesthetics incorporates beauty as a modern aesthetic vision from the phenomenological perspective. The study investigated aesthetics as a phenomenon of perception, sensory knowledge, and the aesthetic response to the production of designs in contemporary a
... Show MoreThe present work provides theoretical investigation of laser photoacoustic one dimensional imaging to detect a blood vessel or tumor embedded within normal tissue. The key task in photoacoustic imaging is to have acoustic signal that help to determine the size and location of the target object inside normal tissue. The analytical simulation used a spherical wave model representing target object (blood vessel or tumor) inside normal tissue. A computer program in MATLAB environment has been written to realize this simulation. This model generates time resolved acoustic wave signal that include both expansion and contraction parts of the wave. The photoacoustic signal from the target object is simulated for a range of laser pulse duration 1
... Show More