Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a crucial technique in signal preprocessing, serving as key descriptors for signal analysis and recognition. OMs are obtained by the projection of orthogonal polynomials (OPs) onto the signal domain. However, when dealing with 3D signals, the traditional approach of convolving kernels with the signal and computing OMs beforehand significantly increases the computational cost of computer vision algorithms. To address this issue, this paper develops a novel mathematical model to embed the kernel directly into the OPs functions, seamlessly integrating these two processes into a more efficient and accurate approach. The proposed model allows the computation of OMs for smoothed versions of 3D signals directly, thereby reducing computational overhead. Extensive experiments conducted on 3D objects demonstrate that the proposed method outperforms traditional approaches across various metrics. The average recognition accuracy improves to 83.85% when the polynomial order is increased to 10. Experimental results show that the proposed method exhibits higher accuracy and lower computational costs compared to the benchmark methods in various conditions for a wide range of parameter values.
Background: Different diagnostic definition and criteria have been recommended by different expert groups for the diagnosis of metabolic syndrome, however, it’s prevalence in the same population could differ depending on the definition used yielding different results. In Iraq, there is a lack of research comparing these different diagnostic definitions.
Objective: To find out the most suitable metabolic syndrome definition to be used for Iraqi people.
Methods: 320 participants were recruited for this study, 53.4% men and 46.6% women, aged between 25-85 years, visiting Baghdad Teaching Hospital, the prevalence of metabolic syndrome according to different definition
... Show MoreBackground: Different diagnostic definition and criteria have been recommended by different expert groups for the diagnosis of metabolic syndrome, however, it’s prevalence in the same population could differ depending on the definition used yielding different results. In Iraq, there is a lack of research comparing these different diagnostic definitions. Objective: To find out the most suitable metabolic syndrome definition to be used for Iraqi people. Methods: 320 participants were recruited for this study, 53.4% men and 46.6% women, aged between 25-85 years, visiting Baghdad Teaching Hospital, the prevalence of metabolic syndrome according to different definitions were compared and the agreement was assessed by the Kappa st
... Show MoreThe integration of gender in urban studies is considered a goal and objective to build a society characterized by justice and equality. It further allows all its residents to enjoy the opportunities to live in a safe urban life. Based on the that, the limitations of the research and its field of interest related to the relationship between gender and urban studies have become clear. The insufficient knowledge in this regard considers gender as a concept that does not exist in itself, but rather overlaps and intersects with several concepts and studies, including urban studies. Thus, it has become necessary to adopt a descriptive methodology that helps reach a theoretical framework to explain the beginnings of such an interaction and inte
... Show MoreCNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.
The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show More