Unlike welding, soldering does not involve melting the work pieces. Soldering is a process in which two or more items are joined together by melting and putting a filler metal (solder) into the joint. Failure in the solder joint may make the system components lose their functions. Electrical wiring and electronic components are joined to devices and printed circuit boards using soldering. Soldering and brazing are both used in the assembly of musical instruments. Lead-tin alloy solder employed in the current investigation which has a diameter of 4 mm and a density of 11.0103 kg/m3 with continuous heat flux heating from the domain's left side and complete insulation on the other side. The melting of PCM was simulated using the ANSYS (Fluent) melting model. Three procedures were followed during the heating stage of the reflow process to perform the melting heat-transfer analysis. The simulation's results were recorded at regular intervals of 15 seconds. The results show melting rate increases as time proceeds. It is almost the same at the initial stages and increases in the middle and the end of the melting process. Heat transfer happens mostly through conduction during the first 0–30 seconds of the melting process, changing to natural convection as the material continues to heat up.
This research aims to determine the concentration of radionuclides in dust samples on the public streets of the small side of Diwaniyah city in Iraq as a result of movements of wheels and cars using the gamma spectra and high purity germanium detector (HPGe) with resolution of (2.3 keV) for energy (1.332 MeV) of cobalt 60Co. Dust samples were collected from the streets Diwaniyah city with (26) samples prepared for measurement. The results of the specific activity concentration of Uranium-238, Thorium-232, Potassium-40 and Cesium-137 were (14.66 ± 0.950, 26.29 ± 2.431, 219.04 ± 15.150 and 11.49 ± 0.876) Bq/kg respectively. The radiation parameters Rae
A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
The research involved attempt to inhibit the corrosion of Al-Si-Cu alloy in 2.5x10-3 mol.dm-3 NaOH solution (pH=11.4) by addition of six different inhibitors with three concentrations (1x10-3, 1x10-2, and 0.1 mol.dm-3). These inhibitors include three organic materials (sodium acetate, sodium benzoate, and sodium oxalate) and three inorganic materials (sodium chromate, disodium phosphate, and sodium sulphate). The data that concerning polarization behaviour are calculates which include the corrosion potential (Ecorr) and current density (icorr), cathodic and anodic Tafel slopes (bc & ba), and polarization resistance (Rp). Protection efficiency (P%) and activation energy (Ea) values were calculated for inhibition by the six inhibitors. The
... Show MoreThe presented work shows a preliminary analytic method for estimation of load and pressure distributions on low speed wings with flow separation and wake rollup phenomena’s. A higher order vortex panel method is coupled with the numerical lifting line theory by means of iterative procedure including models of separation and wake rollup. The computer programs are written in FORTRAN which are stable and efficient.
The capability of the present method is investigated through a number of test cases with different types of wing sections (NACA 0012 and GA(W)-1) for different aspect ratios and angles of attack, the results include the lift and drag curves, lift and pressure distributions along the wing s
... Show MoreIn this study, condensation polymerization was used to synthesize a number of novel liquid crystal polymers with 1,3,4-oxadiazole rings based on melamine. The new synthesized polymers were characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy. Differential scanning calorimetry (DSC) and optical polarization microscopy (OPM) were used to investigate their liquid crystalline properties. The results demonstrated that throughout a wide temperature range, most of the polymers exhibited columnar (CohX) and nematic (N) liquid crystalline phases.
This research aims to introduce a new technique-off-site and self-form segmental concrete masonry arches fabrication, without the need of construction formwork or centering. The innovative construction method in the current study encompasses two construction materials forms the self-form masonry arches, wedge-shape plain concrete voussoirs, and carbon fiber-reinforced polymer (CFRP) composites. The employment of CFRP fabrics was for two main reasons: bonding the voussoirs and forming the masonry arches. In addition, CFRP proved to be efficient for strengthening the extrados of the arch rings under service loadings. An experimental test was conducted on four sophisticated masonry arch specimens. The research parameters were the Keystone thic
... Show MoreWe examine 10 hypothetical patients suffering from some of the symptoms of COVID 19 (modified) using topological concepts on topological spaces created from equality and similarity interactions and our information system. This is determined by the degree of accuracy obtained by weighing the value of the lower and upper figures. In practice, this approach has become clearer.