Background: The primary stability of the dental implant is a crucial factor determining the ability to initiate temporary implant-supported prosthesis and for subsequent successful osseointegration, especially in the maxillary non-molar sites. This study assessed the reliability of the insertion torque of dental implants by relating it to the implant stability quotient values measured by the Osstell device. Material and methods: This study included healthy, non-smoker patients with no history of diabetes or other metabolic, or debilitating diseases that may affect bone healing, having non-restorable fractured teeth and retained roots in the maxillary non-molar sites. Primary dental implant stability was evaluated using a torque ratchet from the dental implant kit and ISQ values generated from the Osstell device. Results: Twenty patients (13 female and 7 male) with an age range of 25-65 years received twenty immediate dental implants. The insertion torque value ranged from 15 to 50 N/cm with a mean of 28 N/cm. At the same time, the ISQ values ranged between 50 and 80 ISQ values, with a mean of 63 ISQ values. The results showed a statistically significant positive correlation between the insertion torque of the dental implant measured by torque rachet and ISQ values checked with Osstell. Conclusion: The insertion torque can be used as a reliable method to estimate the primary stability of the immediately inserted dental implants in the maxillary non-molar sites comparable to the Osstell device ISQ values. In addition, torque ratchet is readily available in the dental implant kit at no additional cost, making it a valuable choice over the Osstell device.
While conservative access preparations could increase fracture resistance of endodontically treated teeth, it may influence the shape of the prepared root canal. The aim of this study was to compare the prepared canal transportation and centering ability after continuous rotation or reciprocation instrumentation in teeth accessed through traditional or conservative endodontic cavities by using cone-beam computed tomography (CBCT).
Forty extracted intact, matured, and 2-rooted human maxillary first premolars were selected for this
Composite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show MoreABSTRACT Background: Viral hepatitis places a heavy burden on the health care. Large number of patient with bleeding disorders has chronic hepatitis C infection, while few are chronic carriers of hepatitis B virus. Aims of study: evaluate the prevalence of HBV, HCV infection among patient with Von Willebrand disease and to find factors that associated with the chance of getting the infection.
The current study used extracts from the aloe vera (AV) plant and the hibiscus sabdariffa flower to make Ag-ZnO nanoparticles (NPs) and Ag-ZnO nanocomposites (NCs). Ag/ZnO NCs were compared to Ag NPs and ZnO NPs. They exhibited unique properties against bacteria and fungi that aren't present in either of the individual parts. The Ag-ZnO NCs from AV showed the best performance against E. coli, with an inhibition zone of up to 27 mm, compared to the other samples. The maximum absorbance peaks were observed at 431 nm and 410 nm for Ag NPs, at 374 nm and 377 nm for ZnO NPs and at 384 nm and 391 nm for Ag-ZnO NCs using AV leaf extract and hibiscus sabdariffa flower extract, respectively. Using field emission-scanning electron microscopes (FE-
... Show MoreThe Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreThe variation in wing morphological features was investigated using geometric morphometric technique of the Sand Fly from two Iraqi provinces Babylon and Diyala . We distributed eleven landmarks on the wings of Sand Fly species. By using the centroid size and shape together, all species were clearly distinguished. It is clear from these results that the wing analysis is an essential method for future geometric morphometry studies to distinguish the species of Sand Flies in Iraq.
Coupling reaction of 2-amino benzoic acid with 8-hydroxy quinoline gave bidentate azo ligand. The prepared ligand has been identified by Microelemental Analysis,1HNMR,FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (ZnII,CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]. The prepared complexes have been characterized by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration ra
... Show More