The research includes the preparation of several complexes of the internal transition elements lanthanide (Ln = La, Nd, Er, Gd, and Dy) containing the 4f shell, with Schiff bases resulting from condensation reactions between 4-antipyrinecarboxaldehyde and 2-aminobenzothiazoles. Schiff's base was identified using FTIR spectra, UV-vis spectroscopy, elemental microanalysis CHNSO, nuclear magnetic resonance, mass spectrometry, and TGA thermal analysis. The complexes were studied and identified with elemental microanalysis CHNSO, FTIR spectroscopy, UV-vis spectroscopy, TGA thermal analysis, conductivity measurement, and magnetic sensitivity. The result showed that these complexes were classified as homogeneous bidentate complexes with the general formula of [Ln2(L)2(NO3)6]·6H2O. The physical measurements indicated that the prepared complexes are non-electrolyte and paramagnetic. Some compounds prepared in vitro were evaluated for their antibacterial activity against four types of pathogenic strains Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumonia, and using the agar disc spreading method for the evaluation. The results showed that some of these complexes have good antibacterial activity compared to the biological activity of the ligand. Also, the biological activity of Schiff's base and the prepared complexes were evaluated against three types of fungi (Candida albicans, Tropical fungi, and Scandal fungi), and they showed great activity against the prepared complexes.
This study synthesized nanocomposite photocatalyst materials from a mixture of Cu2O nanoparticles, ZnO nanoparticles, and graphene oxide (GO) through coprecipitation and hydrothermal methods. This study aims to determine the optimum composition of Cu2O/ZnO/GO nanocomposites in degrading methylene blue. The nanocomposite was synthesized in two steps: 1 the synthesis of Cu2O and ZnO nanoparticles through the coprecipitation method and the preparation of GO through the modified Hummer method. 2 The preparation of Cu2O and ZnO nanoparticles mixtures with GO through the hydrothermal method to form Cu2O/ZnO/GO nanocomposites. The adsorption-photocatalysis process of methylene blue
... Show MoreThe catalytic activity of faujasite type NaY catalysts prepared from local clay (kaolin) with different Si/Al ratio was studied using cumene cracking as a model for catalytic cracking process in the temperature range of 450-525° C, weight hourly space velocity (WHSV) of 5-20 h1, particle size ≤75μm and atmospheric pressure. The catalytic activity was investigated using experimental laboratory plant scale of fluidized bed reactor.
It was found that the cumene conversion increases with increasing temperature and decreasing WHSV. At 525° C and WHSV 5 h-1, the conversion was 42.36 and 35.43 mol% for catalyst with 3.54 Si/Al ratio and Catalyst with 5.75 Si/Al ratio, respectively, while at 450° C and at the same WHSV, the conversion w
Microbial lipases today occupy a place of prominence among biocatalysts owing to their ability to catalyze awide variety of reactions in aqueous and non- aqueous media, A.baumannii were isolated from different clinical specimens from hospitalized patients from Baghdad hospitals and were detected by biochemical tests and API20E system. The percentage of isolation was (16.6%), A. baumannii is an increasingly multidrug – resistant (MDR), it showed high level of resistant to Ceftriaxon, Colistin, Piperacillin, Co-trimoxazol, Tertracycline, Carbenicillin, Amoxicillin, Penicillin G, Gentamicin and Ceftazidim , wherease the isolates were highly sensitive to Imipenem, Ciprofloxacin, Meropenem, Amikacin, and Cefotaxime.
... Show MoreAsthma is a chronic in?ammatory respiratory disease associated with the changes of asthmatic airway structural that result from interact remodeling and in?ammatory processes lead to obstruction of airway. Guggulsterone (GS) is a bioactive compound and plant steroid present in guggul gum of Commiphora wightii, which has anti-inflammatory and antioxidant activities. This study designed to investigate of anti-inflammatory activity of gugglsterone in improvement of asthma. Forty eight healthy albino male rats divided to six groups, Group I: Control group (distal water), Group II: Positive control group (distal water) with sensitization, Group III: Guggulsterone (25 mg/kg/day) with sens
... Show MoreBacterial water pollution is a genuine general wellbeing concern since it causes various maladies. Antimicrobial nanofibers can be integrated by incorporating nanobiocides, for example, silver nanoparticles into nanofibers. Nylon 6 was dissolved in formic acid at a concentration of (25 wt. %) and tough antibacterial (AgNO3/Nylon) nanofibers were produced utilizing electrospinning system. Polymer solution was tested before accomplishing electrospinning process to acquire its surface tension, electric conductivity and viscosity, where every one of those parameters increased relatively with increasing concentration of (AgNO3) additions. SEM and EDX spectra were utilized to focus on the morphology, surface elemental mem
... Show MoreMany previous investigations have found quercetin to be a powerful antioxidant and antitumor flavonoid, but its poor bioavailability has limited its use. This current study investigated the effects of two newly synthesized Quercetin Schiff bases containing 2-amino thiadiazole-5-thiol (Q1), and its benzyl derivatives (Q2) on MCF-7 human breast cancer cells. Cell viability and apoptosis were assessed to determine the toxic effects of Q1 and Q2. Cytotoxicity valuation showed that both compounds inhibited MCF-7 cell growth, and lactate dehydrogenase (LDH) activity increased in a dose-dependent aspect compared to the control group. Comet assay results observed that Q1 and Q2 induce more serious DNA damage than the control (untreated cell
... Show MoreIn this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh
... Show More