The Matching and Mosaic of the satellite imagery play an essential role in many remote sensing and image processing projects. These techniques must be required in a particular step in the project, such as remotely change detection applications and the study of large regions of interest. The matching and mosaic methods depend on many image parameters such as pixel values in the two or more images, projection system associated with the header files, and spatial resolutions, where many of these methods construct the matching and mosaic manually. In this research, georeference techniques were used to overcome the image matching task in semi automotive method. The decision about the quality of the technique can be considered i
... Show Moreهدفت الدراسة إلى التعرف على مستوى تقييم الإعلاميين العراقيين المقيمين في الأردن لتغطية الإصلاحات السياسية و الاقتصادية في العراق من قبل الفضائيات العراقية. و هدفت كذلك إلى التعرف على الف
In this study, the activity concentrations of indoor radon, thoron
and their progeny have been measured in air for 61 different
locations of Al-Maddan city using twin cup dosimeter. Furthermore,
some useful parameters concerning the health hazards have been
estimated; working level month (WLM), annual effective dose (Eff),
and excess lung cancer per million person per year (ELC).The results
show that the values of radon gas levels in the investigated districts
varied from 56.28 to 194.43Bq/m3with an overall average value
132.96Bq/m3, while 0.313 to 1.085 for WLM with an overall average
0.740, respectively. The value of Eff and ELC have been found to
vary from 1.420 to 4.918 mSv/y with an overall average valu
This work includes a detailed description of the Leucostoma nigricorpuris sp. nov. from
Iraq. Locality, host plants and data of collection were given.
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.