The Al-Kindy College Medical Journal (KCMJ) is an Iraqi scholarly journal published by the Al-Kindy College of Medicine, University of Baghdad. It was officially founded in 2004. It is a peer-reviewed journal, published in both online and printed forms. It has a mission to offer a publication platform that mirrors recent knowledge and findings in the field of medicine and medical sciences. It publishes various types of articles, including editorial, review article, research article, brief report, case report, and letter to editor. It accepts articles in the English language. It was biannually published till 2021 when it started to launch three issues per year. The journal is registered with numerous partners, including Iraqi Academi
... Show MoreThis research examines the scientific impact of Al-Hafiz Sharaf al-Din al-Damiati, who descended from a famous scholarly family known as (Al-Damiati) in reference to the city of Damietta in Egypt. This family was distinguished by producing scholars and writers during the Ayyubid and Mamluk eras, the most prominent of whom was Sharaf al-Din. He was preceded by a scholar of no lesser scientific stature, Shams al-Din al-Damiati (d. 693 AH), who was famous for his knowledge of the science of readings. Sharaf al-Din al-Damiati was famous for his mastery of the science of hadith and genealogy. The political situation that prevailed during his era was represented by the occupation of the city of Baghdad in 656 AH/1258 AD, the end of the Abbasid Ca
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreAbstract
In this paper, fatigue damage accumulation were studied using many methods i.e.Corton-Dalon (CD),Corton-Dalon-Marsh(CDM), new non-linear model and experimental method. The prediction of fatigue lifetimes based on the two classical methods, Corton-Dalon (CD)andCorton-Dalon-Marsh (CDM), are uneconomic and non-conservative respectively. However satisfactory predictions were obtained by applying the proposed non-linear model (present model) for medium carbon steel compared with experimental work. Many shortcomings of the two classical methods are related to their inability to take into account the surface treatment effect as shot peening. It is clear that the new model shows that a much better and cons
... Show MoreIn this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
Face recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show More