The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.
The aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface problems. More specifically, optimal order a posteriori error analysis in the - norm for semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and time.
The exploitation of obsolete recyclable resources including paper waste has the advantages of saving resources and environment protection. This study has been conducted to study utilizing paper waste to adsorb phenol which is one of the harmful organic compound byproducts deposited in the environment. The influence of different agitation methods, pH of the solution (3-11), initial phenol concentration (30-120ppm), adsorbent dose (0.5-2.5 g) and contact time (30-150 min) were studied. The highest phenol removal efficiency obtained was 86% with an adsorption capacity of 5.1 mg /g at optimization conditions (pH of 9, initial phenol concentration of 30 mg/L, an adsorbent dose of 2 g and contact time of 120min and at room temperature).
... Show MoreThe main objective of this research is to use the methods of calculus ???????? solving integral equations Altbataah When McCann slowdown is a function of time as the integral equation used in this research is a kind of Volterra
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
The ability of Cr (VI) removal from aqueous solution using date palm fibers (leef) was investigated .The effects of pH, contact time, sorbets concentration and initial metal ions concentration on the biosorption were investigated.
The residual concentration of Cr (VI) in solution was determined colorimetrically using spectrophotometer at wave length 540 nm .The biosorption was pH-dependent, the optimum pH was 7 and adsorption isotherms obtained fitted well with Langmuir isotherms .The Langmuir equation obtained was Ce/Cs = 79.99 Ce-77.39, the correlation factor was 0.908.These results indicate that date palm fibers (leef) has a potential effect for the uptake of Cr (VI) from industrial waste water.
In this study, the modified size-strain plot (SSP) method was used to analyze the x-ray diffraction lines pattern of diffraction lines (1 0 1), (1 2 1), (2 0 2), (0 4 2), (2 4 2) for the calcium titanate(CaTiO3) nanoparticles, and to calculate lattice strain, crystallite size, stress, and energy density, using three models: uniform (USDM). With a lattice strain of (2.147201889), a stress of (0.267452615X10), and an energy density of (2.900651X10-3 KJ/m3), the crystallite was 32.29477611 nm in size, and to calculate lattice strain of Scherrer (4.1644598X10−3), and (1.509066023X10−6 KJ/m3), a stress of(6.403949183X10−4MPa) and (26.019894 nm).