Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model based on the Spike Neural Network (SNN) called IoT-Traffic Classification (IoT-TCSNN) to classify IoT devices traffic. The model consists of four phases: data preprocessing, feature extraction, classier and evaluation. The proposed model performance is evaluated according to evaluation metrics: accuracy, precision, recall and F1-score and energy usage in comparison with two models: ML based Support Vector Machine IoT-TCSVM and ML based Deep Neural Network (IoT-TCDNN). The evaluations result has been shown that IoT-TCSNN consumes less energy in contrast to IoT-TCDNN and IoT-TCSVM. Also, it gives high accuracy in comparison with IoT-TCSVM.
The present work was done in an attempt to build systematic procedures for treating warts by 810 nm diode laser regarding dose parameters, application parameters and laser safety. The study was done in Al- Kindy Teaching Hospital in Baghdad, Iraq during the period from 1st October 2003 till 1st April 2004. Fifteen patients completed the treatment and they were followed for the period of 3 months. Recalcitrant and extensive warts were selected for the study. Patients were randomly divided into 3 groups to be treated by different laser powers 9, 12 and 15 W, power density of 286 W/cm2, 381W/cm2, 477 W/cm2 pulse duration of 0.2 s, interval of 0.2 s and repeated pulses were used. The mode of application was either circular or radial. Pain oc
... Show MoreIn recent years, data centre (DC) networks have improved their rapid exchanging abilities. Software-defined networking (SDN) is presented to alternate the impression of conventional networks by segregating the control plane from the SDN data plane. The SDN presented overcomes the limitations of traditional DC networks caused by the rapidly incrementing amounts of apps, websites, data storage needs, etc. Software-defined networking data centres (SDN-DC), based on the open-flow (OF) protocol, are used to achieve superior behaviour for executing traffic load-balancing (LB) jobs. The LB function divides the traffic-flow demands between the end devices to avoid links congestion. In short, SDN is proposed to manage more operative configur
... Show MoreIn this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between every
... Show MorePrediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreThe characteristic of our time is the tremendous technological progress and the wide use of the Internet. Children have had a large share of this progress.as they are becoming fond of having the technological equipment of tablets and mobile phones which become indispensable for these children cannot do without them .
Recently, the phenomenon of using mobile phones and tablets by children has become more widespread, and the society in general and parents, in particular, have ignored the reasons for their health .Despite the many advantages and benefits for children who are well trained to use these devices properly that have enhanced their cognitive and social abilities, there are many disadvantages that could harm children's growth if
In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe
... Show More