Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model based on the Spike Neural Network (SNN) called IoT-Traffic Classification (IoT-TCSNN) to classify IoT devices traffic. The model consists of four phases: data preprocessing, feature extraction, classier and evaluation. The proposed model performance is evaluated according to evaluation metrics: accuracy, precision, recall and F1-score and energy usage in comparison with two models: ML based Support Vector Machine IoT-TCSVM and ML based Deep Neural Network (IoT-TCDNN). The evaluations result has been shown that IoT-TCSNN consumes less energy in contrast to IoT-TCDNN and IoT-TCSVM. Also, it gives high accuracy in comparison with IoT-TCSVM.
Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MorePermeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreMethods of teaching plays an important vole in the educational process
because is the link between the teacher and the learner. The process of
teaching doesut fulfill the desirable results unless the methods of guiding and
teaching are provided and through a qualified educationalist capable of
communicating the syllabus to the students in an easy and clear way. In spite
of the diversity of the methods of teaching ,there is no one way suitable for all
the educational purposes , all the sciences ,all the subjects ,all the levels of
growth ,levels of teaching, maturity and intelligences ,all teachers and
educationalists and all the circum stances surrounding the teaching processes
.The teacher is the one who choos
Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct
This study investigated the effect of using brainstorming as a teaching technique on the students’ performance in writing different kinds of essays and self regulation among the secondary students. The total population of this study, consisted of (51) female students of the 5th Secondary grade in Al –kawarzmi School in Erbil during the academic year 2015-2016. The chosen sample consisted of 40 female students, has been divided into two groups. Each one consists of (20) students to represent the experimental group and the control one. Brainstorming technique is used to teach the experimental group, and the conventional method is used to teach the control group. The study inst
... Show MoreThe adopted method in the teaching of history is conservation and indoctrination in all grades, and this will lead to a lack of students interact with teachers in the course of the lesson, and poor use of teachers to questions that raise students' thinking during the lesson, which leads to a lack of interest in the topic of the lesson and wasting opportunities contribution making it the teacher at the center of the educational process, and to provide arrogating the researcher to contribute to teaching style with the belief that the use of this method of teaching could lead to overcome the difficulties and problems faced by the teaching material.
And there are educational complexes integrated approac
... Show MoreThis research aims to examine the relationship between learning organization and behavior of work teams. The variable of the learning organization took four dimensions depending on the study (sudhartna & Li, 2004): Common cultural values , communication, knowledge transfer and the characteristics of workers. The behavior of teams was identified on the basis of realizing of the respondents of their organization to work as a team where the research relied concepts applied in the study (Hakim , 2005) , and chose to research the case of a service organization for the study and relied on four dimensions of coordination , cooperation , sharing of information , the performance of the team, and was a curriculum approach and des
... Show MoreThis study aimed to assess orthodontic postgraduate students’ use of social media during the COVID-19 lockdown. Ninety-four postgraduate students (67 master’s students and 27 doctoral students) were enrolled in the study and asked to fill in an online questionnaire by answering questions regarding their use of social media during the COVID-19 lockdown. The frequency distributions and percentages were calculated using SPSS software. The results showed that 99% of the students used social media. The most frequently used type of social media was Facebook, 94%, followed by YouTube, 78%, and Instagram, 65%, while Twitter and Linkedin were used less, and no one used Blogger. About 63% of the students used elements of social media to l
... Show MoreThe emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA
... Show More