The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized support vector regression model with a genetic algorithm (SVR-GA) over the other ML forecasting models for monthly river flow forecasting using 90%–10% data division. In addition, it was found to improve the accuracy in forecasting high flow events. The unique architecture of developed SVR-GA due to the ability of the GA optimizer to tune the internal parameters of the SVR model provides a robust learning process. This has made it more efficient in forecasting stochastic river flow behaviour compared to the other developed hybrid models.
Al-Yusifia river was assessed at three sampling stations with study period from Autumn 2010 to the end of Summer 2011. The present investigation was carried out on diversity of fungi and bacteria from Al-Yusifia river, Baghdad city. During the study, a total of 12 fungal genus and 6 bacterial genus were isolated during the year seasons. The dominant fungus at the three stations were Penicillium sp., then Rhizopus and Trichophyton megninii while the dominant bacteria was Escherichia coli and Klebsiella sp.
The higher
... Show MoreA seasonal study of periphytic algae attached to the surface of river boats was conducted in Tigris river in Al Aadhamiya site for the period from October 2016 to May 2017. A total of 107 taxa of periphytic algae were identified belonging to the four classes of algae. The periphytic algae community dominated by Bacillariophyceae was (60.7%) followed by Chlorophyceae (20.5%) and Cyanophyceae (17.7%) Chrysophyceae was constituted (0.9%) of the total number. During the whole period of study filamentous taxa such as Oscillatoria amphibian, Phormidium spp., Spirulinagigantean, Cladophoreglomerata and Melosira roeseana remained the dominant colonizer which may be reflect the ability of this species to grow multiplies under different environmental
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
A solid Phase Extraction (SPE) cartridges followed by HPLC-UV method is described for the simultaneous quantitative determination of benzidine (BZ) and its substituted 3, 3’-dichlorobenzidine (DCB) and 3, 3’-Dimethylbenzidine (DMB). The Benzidines were separated by liquid chromatography using a C-18 column with UV detector at wave length of 280nm. The mode of Flow was isocratic. The mobile phase was consisted of 75:25 methanol: water, column temperature 50C°, and Flow Rate 1.8ml/min. Calibration curves were linear (R2 = 0.9979-0.9995). LOD (26.36-33.67) µg/L, LOQ (109.98-186.11) µg/L, the Robustness (2.99-4.35), Ruggedness (2.93-3.65).Conditions of extraction by (SPE) cartridges were optimized, the resin used is Octadecyl silica (ODS
... Show MoreThe experiment was carried out in the green house of botanical garden belong to Department of Biology/College of Education for Pure Science Ibn AL-Haitham, University of Baghdad for growing season 2017-2018 to evaluate effect of lead stress with concentrations (0, 50, 100, 150) mg.L -1 and Selenium concentrations (0, 15, 30) mg.L-1 on growth of dill plant using pots. The experiment was designed according to completely randomized design (CRD) with three replications. Result indicated that dill plants subjected to lead stress with height concentrations caused decrease in plant parameters (plant height, no. of branches. plant-1, root length, shoot dry weight, the content of nitrogen, phosphorus and potassium, protein concentration, no. of umbe
... Show MoreThe nonlinear optical properties response of nematic liquid crystal (6CHBT) and the impact of doping with two kinds of nanoparticles; Fe3O4 magnetic nanoparticles and SbSI ferroelectric nanoparticles have been studied using the non-linear dynamic method through z-scan measurement technique. This was achieved utilizing CW He-Ne laser. The pure LC and magnetic LC nanoparticle composite samples had a maximum absorption while the ferroelectric LC nanoparticle composite had a minimum absorption of the incident light. The nonlinear refractive index was positive for the pure LC and the rod-like ferronematic LC composite samples, while it was negative for the ferroelectric LC composite. The studying of the nonlinear optical
... Show MoreThis study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV
... Show MoreThis work aimed to investigate the effect of Diode laser 805 nm on plasmid DNA and RNA
contents of some Gram negative bacteria represented by Escherichia coli and Proteus mirabilis isolates
.Plasmid extraction was done using two methods (Salting out and CTAB method).Different powers and
pulse repetition rates for 805 nm Diode Laser were used to study this effect. Results revealed that the
plasmid profile of the two species were highly affected using (2, 3) W at different frequencies including
5and 10 kHz as compared with 1 kHz while plasmids were gradually disappeared at 1W, 10 kHz. In the
same time the shining of RNA was also decreased gradually then disappeared with increasing powers
especially at 2W and 10 kHz cau
This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap val
... Show More