This study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal measurements reflect the fact that all the polymers prepared in this study possess thermal stability, and the most thermally stable are the polymers that contain more phenyl rings. The inhibitory feature of the prepared polymers is studied through many tests, which include measuring the erosion rate through methods known as weight loss and scanning electron microscopy tests. In the weight loss method, the inhibiter gives good efficiency in protecting aluminium metal, to reach the inhibition efficiency to 83% using polymer P5 inhibitor with concentration of 0.15 in 0.1 M solution of NaOH. On the other hand, P4 it showed the lowest inhibition efficiency of 16.74% at a concentration of 0.05. Scanning electron microscopy (SEM) images showed that a high corrosion inhibition efficiency of the polymers in NaOH solution (0.1 M), while the metal surface under the corrosion containing the inhibitors showed lower corrosion than that which could be found on the same metal surface, that is located in a completely empty media of the barrier and also clearly showed the protective layer on the surface. Viscosity testing in dimethylsulfoxide solvent showed that the true viscosity increases three fold when the concentration increases from 0.1 to 0.7. The results also showed that copolymer P7 has a higher viscosity.
The design, synthesis, and characterization of a star shaped 2,4,6-tris-(4`-carboxyphenoxy)-1,3,5-triazine liquid crystalline with columnar discotic mesophase properties establish H-bond interactions with 3,5-dialkoxypyidine were reported. The structures of the synthesized compounds were actually determined by elementary analysis, and FT-IR, ¹HNMR, ¹³CNMR, and mass spectroscopy. The mesomorphic properties of these mesogens were examined using differential scanning calorimetry (DSC) and optical polarizing microscopy (OPM). The synthesized molecules exhibited enantiotropic hexagonal columnar liquid crystal, which depends for the H- bond complex in a 1:3 ratio.
In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.
Meloxicam (MLX) is non-steroidal anti -inflammatory, poorly water soluble, highly permeable drug and the rate of its oral absorption is often controlled by the dissolution rate in the gastrointestinal tract. Solid dispersion (SD) is an effective technique for enhancing the solubility and dissolution rate of such drug.
The present study aims to enhance the solubility and the dissolution rate of MLX by SD technique by solvent evaporation method using sodium alginate (SA), hyaluronic acid (HA), collagen and xyloglucan (XG) as gastro-protective hydrophilic natural polymers.
Twelve formulas were prepared in different drug: polymer ratios and evaluated for their, percentage yield, drug content, water so
... Show MoreHighly Modified Asphalt (HiMA) binders have garnered significant attention due to their superior resistance to rutting, fatigue cracking, and thermal distress under heavy traffic loads and extreme environmental conditions. While elastomeric polymers such as Styrene- Butadiene-Styrene (SBS) have been extensively used in HiMA applications, the potential of plastomeric polymers, including Polyethylene (PE) and Ethylene Vinyl Acetate (EVA), remains largely unexplored. This study aims to evaluate the performance of reference binder (RB) modified with plastomeric HiMA asphalt in comparison to SBS-modified binders and determine the optimal polymer dosage for achieving an optimal balance between rutting resistance and fatigue durability. The experi
... Show MoreInSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.
Introduction: This study was performed to compare the effect of Fractional CO2 laser or Q switched Nd:YAG laser of surface treatment on the shear bond strength of zirconia-porcelain interface. Methods: Fractional CO2 laser at 30 W, 2 ms, time interval 1 ms, distance between spots 0.3 mm, and number of scans is (4) or Q switched Nd:YAG laser at 30 J/mm2 and 10 Hz were used to assess the shear bond strength of zirconia to porcelain. Pre-sintered zirconia specimens were divided into three groups (n = 10) according to the surface treatment technique used: (a) untreated (Control) group; (b) CO2 group; (c) Nd:YAG group. All samples were then sintered and veneered with porcelain according to the manufacturer’s instructions. Surface morph
... Show MoreAluminum oxide (ALO) was grafted by acrylic acid monomer (AlO-AM) and then, it was polymerized to produce alumina grafted poly(acrylic acid) (AlO-AP). The prepared AlO-AM and AlO-AP were characterized by Fourier-transform infrared, differential scanning calorimetry , thermogravemetric analyzer and particle size distribution. Adsorption equilibrium isotherms, adsorption kinetics and thermodynamic studies of the batch adsorption process were used to examine the fundamental adsorption properties of phenol (P) and p-chlorophenol (PCP). The experimental equilibrium adsorption data were analyzed by three widely used two-parameters Langmuir, Freundlich and DubininRadushkevich isotherms. The maximum P and PCP adsorption capacities based on t
... Show MoreSynthesis And Studies Of Complexes Of Some Elements With 2-Mercaptohiazole (2-HMBT)
The preparation and characterization of the Cu (II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) metal complexes of heterocyclic azo ligand 2-[(4`-sulphamide phenyl) azo] -4,5-diphenyl imidazole (4-SuBAI) have been studied by elemental analysis, FT-IR and UV-Vis Spectroscopic, magnetic moment and molar conductance methods. The analytical data showed that all chelate complexes were prepared with (metal-ligand) ratio of (1:2). The general formula of these complexes was [ML2X2]. nH2O [were L=2-[(4`-sulphamide phenyl) azo]-4,5-diphenyl imidazole and X=Cl, and the octahedral geometry were suggested for these complexes .
In the present study benzofuran based chalcones 1 (a, b) are synthesized by condensing aromatic aldehydes with 2-acetylbenzofuran in the presence suitable base. These chalcones are very useful precursors for the synthesis of pyrazoline, isoxazoline, pyrmidine, cyclohexenone and indazole derivatives. All these compounds are characterized by their melting points, FTIR and 1 HMNR (for some of them) spectral dat