A 3D Geological model was generated using an advanced geostatistical method for the Cretaceous reservoir in the Bai Hassan oil field. In this study, a 3D geological model was built based on data from four wells for the petrophysical property distribution of permeability, porosity, water saturation, and NTG by using Petrel 2021 software. The geological model was divided into a structural model and a property model. The geological structures of the cretaceous reservoir in the Bai Hassan oil field represent elongated anticline folds with two faults, which had been clarified in the 3D Structural model. Thirteen formations represent the Cretaceous reservoir which includes (Shiranish, Mashurah, U.kometan, Kometan Shale, L. Kometan, Gulneni, Dokan, Mauddud, Jawan/Mud, Batiwah, Shuaiba, Garagu, L.Sarmord). According to the property model, the model for each petrophysical property was constructed based on core data and CPI. By using the geostatistical method, the property model was constructed. The Mauddud Formation is considered one of the most promising hydrocarbon reservoirs in the Bai Hassan oil field based on the results of the property model, where the ratio of water saturation is around 30%, the porosity value is reaching up to 31%, and the net to gross ratio is averaging at 70%.
Knowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the format
... Show MoreThe water injection of the most important technologies to increase oil production from petroleum reservoirs. In this research, we developed a model for oil tank using the software RUBIS for reservoir simulation. This model was used to make comparison in the production of oil and the reservoir pressure for two case studies where the water was not injected in the first case study but adding new vertical wells while, later, it was injected in the second case study. It represents the results of this work that if the water is not injected, the reservoir model that has been upgraded can produce only 2.9% of the original oil in the tank. This case study also represents a drop in reservoir pressure, which was not enough to support oil production
... Show MoreReservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an esti
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreThe research objectives, to build a measure of the level of tactical performance of volleyball players applying for the Iraqi Premier League for the 2018-2019 season. The nature of the research problem, then the researchers determined the research sample in the deliberate manner of the players of the Iraqi clubs for the Premier League (B, A). The researchers adopted the entire community as a sample for the research, and the number (156) players distributed over (13) clubs and divided the sample into (12)players an exploratory experiment player representing (the police club) and (100) player representing the construction sample and after a maximum period of two months has passed since applying the scale to the construction sample the researc
... Show MoreReservoir quality assessment is important for detecting hydrocarbon-bearing zones and guiding future enhancement strategies. This study presents a detailed petrophysical evaluation of the Mishrif Formation in the Buzurgan Oilfield, which was selected due to its strategic value through its significant remaining reserves which making it an ideal candidate for advanced evaluation techniques. This study aims for shale content, porosity, permeability, water saturation, net to gross, and lithology determination. Well log and core data were used together to establish accurate property estimations. Permeability prediction through conventional methods, like core permeability-porosity correlations, was highly dispersive due to the heterogenei
... Show MoreAbstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show More