This study was carried out in epidemically field with common reed (Phragmites communis Trin.) plants in the Nassiriah cityThiQur governorate ,during 2009/2010 to investigate the influence of plant growth regulator gibberellin (GA3)and cytokinin (CK) in increasing the efficacy of glyphosate and Fluazifop-butyl in common reed control . Factorial experiment in RCBD was used with three replications in tow Factors . Glyphosate 3500mg .l־¹ gave the higher mean of injury score of common reed and lower mean of common reed shoots , shoots dry weight and rhizome dry weight(3.59,22.01 shoot /0.5m² ,0.57Kg / 0.5m² and 250.50gm /0,5m² ),respectively. All plant growth regulators gaves the higher means of common reed shoots and rhizome dry weight compared with untreated control, GA3 1500mg.l־¹ gave preceded significantly in common reed shoots and rhizome dry weight (25,95shoot/0.5m²,357.75gm/0.5m²) respectively . Add of plant growth regulators cause in increasing the efficacy of herbicides in influence of common reed plants , and application of GA31500mg.l־¹ with glyphosate 3500mg.l־¹ gave higher mean of in jury score of common reed and decrease of shoots dry weight (4.10 ,0.48 Kg 0.5m² ) , respectively
The research aimed at identifying the effect of the think, pair, and share strategy by using educational movies on learning jumping opened legs and closed legs skills on vault in artistic gymnastics for women. It also aimed at identifying the group that learned better the skills understudy. The researcher used the experimental method on second-grade College of Physical Education and Sport Sciences female students. Twelve female students were selected from each of the two sections to form the subjects of the study. The main program was applied for eight weeks with one learning session per week. The data was collected and treated using SPSS to conclude that the think, pair, and share strategy and the traditional program have positive effects
... Show MoreThe virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr
This article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th
... Show MoreThe aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr
... Show MoreNowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of
... Show MoreObjectives: The purpose of the study is to ascertain the relationship between the training program and the socio-demographic features of patients with peptic ulcers in order to assess the efficiency of the program on patients' nutritional habits.
Methodology: Between January 17 and October 30 of 2022, The Center of Gastrointestinal Medicine and Surgery at Al-Diwanyiah Teaching Hospital conducted "a quasi-experimental study". A non-probability sample of 30 patients for the case group and 30 patients for the control group was selected based on the study's criteria. The study instrument was divided into 4 sections: the first portion contained 7 questions about demographic information, the second sect
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show More