Preferred Language
Articles
/
BhasIocBVTCNdQwCTDoQ
Optimal Economic Design of Diversion Structures during Construction of a Dam by Particle Swarm Optimization
...Show More Authors

Diverting river flow during construction of a main dam involves the construction of cofferdams, and tunnels, channels or other temporary passages. Diversion channels are commonly used in wide valleys where the high flow makes tunnels or culverts uneconomic. The diversion works must form part of the overall project design since it will have a major impact on its cost, as well as on the design, construction program and overall cost of the permanent works. Construction costs contain of excavation, lining of the channel, and construction of upstream and downstream cofferdams. The optimization model was applied to obtain optimalchannel cross section, height of upstream cofferdam, and height of downstream cofferdamwith minimum construction costs for diversion works which is solved by PSO method using MATLAB. The optimization model was applied to prepare the optimal design graphs.It can be noticed, at any design flowrate, optimalwater flow depth, bed width, and height of upstream and downstream cofferdams decrease with increase of the side-slope. Also, it can be observed, at any design flowrate, the construction cost increases with increase of the side-slope.

Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Fuzzy Wavenet (FWN) classifier for medical images
...Show More Authors

 

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.

  In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.

&n

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
DNA Encoding and STR Extraction for Anomaly Intrusion Detection Systems
...Show More Authors

View Publication
Scopus (9)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering
...Show More Authors

Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
CTJ: Input-Output Based Relation Combinatorial Testing Strategy Using Jaya Algorithm
...Show More Authors

Software testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing appli

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning
...Show More Authors

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (31)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Al–bahith Al–a'alami
LOCAL NEWS SOURCES IN THE IRAQI NEWSPAPERS: Local news sources in the Iraqi newspapers (An analytical study of local news sources In the newspaper Al-Zaman for the period from 1/6/2006 to 06/30/2006)
...Show More Authors

Local news is an important topic of the press because of its importance to readers. It touches their daily life in one way or another, which makes them interested in and followers of them. Hence the importance of local news, as it interests a wide segment of readers.
There are many sources of newspapers for obtaining local news, as these sources are distributed to the newspaper's own sources and external sources.

Self-sources are the newspaper's own sources, through which it is possible to obtain this news, such as the representatives of the newspaper and its correspondents and the journalists working in it. This is the example in this way.
The external sources are distributed to local and international news agencies and sa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
HandWritten Numerals Recognition System
...Show More Authors

  Recognition is one of the basic characteristics of human brain, and also for the living   creatures. It is possible to recognize images, persons, or patterns according to their characteristics. This recognition could be done using eyes or dedicated proposed methods. There are numerous applications for pattern recognition such as recognition of printed or handwritten letters, for example reading post addresses automatically and reading documents or check reading in bank.

      One of the challenges which faces researchers in character recognition field is the recognition of digits, which are written by hand. This paper describes a classification method for on-line handwrit

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
International Journal Of Data Mining, Modelling And Management
Association rules mining using cuckoo search algorithm
...Show More Authors

Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.

View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Iraqi stock market structure analysis based on minimum spanning tree
...Show More Authors

tock markets changed up and down during time. Some companies’ affect others due to dependency on each other . In this work, the network model of the stock market is discribed as a complete weighted graph. This paper aims to investigate the Iraqi stock markets using graph theory tools. The vertices of this graph correspond to the Iraqi markets companies, and the weights of the edges are set ulrametric distance of minimum spanning tree.

View Publication
Scopus Crossref