Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreReliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co
A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreHartree-Fock (HF) method relies in the calculations of nonlinear optical properties (NLO) for benzoic acid molecule. Also, another theoretical study is conducted by using the TD-DFT Density Functional Theory through B3LYP/High Base Set 6-311++G (2d,2p) on Gaussian program09. Moreover, an experimental study has been done to obtain the electrons spectrum for benzoic acid with and without ethanol. While the experimental study is done by using UV/VIS. spectrophotometer. Energy gap values of electronic transition between HOMO and LUMO is obtained from theoretical and experimental results. Consequently, the theoretical result for determining the energy gap calculated from EHOMO-LUMO wasvery close to the results of UV / VIS. spectrum. A theoretica
... Show MoreAg2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show More