In this work, Co-Y-oxide Nano Structure is successfully synthesized via hydrothermal method. The XRD analysis, SEM analysis, optical, electrical and photo sensing properties have been investigated for Co3O4 and Co-Y-oxide thin films. The X-ray diffraction (XRD) analysis reveals that all films are polycrystalline in nature, having cubic structure. The SEM images of thin films clearly indicates that Co3O4 possesses nanosphere like structure and flower like for Co-Y-oxide. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc equation and it increases for Co-Y-oxide. The photo sensing properties of thin films are investigated as a function of time at different wavelengths to find the sensitivity for these lights. For Co3O4, photo sensitivities are 39.7% and 40% at wavelengths 470nm and 600nm respectively, while for Co-Y-oxide, photo sensitivities are 84% and 111% for these wavelengths. So, higher sensitivity is obtained for Co-Y-oxide with fast rise and fall times less than 1s.
Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show MoreAn analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tassie mod
In this work, porous Silicon structures are formed with photochemical etching process of n-type Silicon(111) wafers of resistivity (0.02.cm) in hydrofluoric acid (HF) of concentration (39%wt) under light source of tungeston halogen lamp of (100 Watt) power. Samples were anodized in a solution of 39%HF and ethanol at 1:1 for 15 minutes. The samples were realized on n-type Si substrates Porous Silicon layers of 100m thickness and 30% of porousity. Frequency dependence of conductivity for Al/PSi/Si/Al sandwich form was studied. A frequency range of 102-106Hz was used allowing an accurate determination of the impedance components. Their electronic transport parameters were determined using complex impedance measurements. These measu
... Show MoreIn this research was study the effect of increasing the number of layers of the semiconductor films as PbS on the average grain sizes and illustrate the relationship between the increase in the average grain size and thickness of the membrane, and membrane was prepared using the easy and simple and does not need the complexity of which is that the chemical bath , and from an X-ray diffraction found that the material and the installation of a random cubic and when increasing the number of layers deposited note the emergence of a number of vertices of a substance and PbS at different levels but the level is more severe (200) as well as the value is calculated optical energy gap and found to be not affected by increase thickness and from th
... Show More An analytical form of the ground state charge density distributions
for the low mass fp shell nuclei ( 40 A 56 ) is derived from a
simple method based on the use of the single particle wave functions
of the harmonic oscillator potential and the occupation numbers of
the states, which are determined from the comparison between theory
and experiment.
For investigating the inelastic longitudinal electron scattering form
factors, an expression for the transition charge density is studied
where the deformation in nuclear collective modes is taken into
consideration besides the shell model space transition density. The
core polarization transition density is evaluated by adopting the
shape of Tass
The general approach of this research is to assume that the small nonlinearity can be separated from the linear part of the equation of motion. The effect of the dynamic fluid force on the pump structure system is considered vibrates at its natural frequency but the amplitude is determined by the initial conditions. If the motion of the system tends to increase the energy of the pump structure system, the vibration amplitude will increase and the pump structure system is considered to be unstable. A suitable MATLAB program was used to predict the stability conditions of the pump structure vibration. The present research focuses on fluid pump problems, namely, the role played by damping coefficient C, damping factor
... Show MoreThe nuclear structure of some cobalt (Co) isotopes with mass number A=56-60 has been studied depending on the effect of some physical properties such as the electromagnetic properties effects, such as, elastic longitudinal form factors, electric quadrupole moments, and magnetic dipole moments. The fp model space is used to present calculations using GXFP1 interaction by adopting the single particle wave functions of the harmonic oscillator. For all isotopes under consideration, the 40Ca nucleus is regarded as an inert core in fp model-space, while valence nucleons are moving through 1f7/2, 2p3/2, 1f5/2, and 2p1/2 orbits. The effects of core-polarization are obtained by the first orde
... Show MoreIn this paper, the static analysis for finding the best location of boxes inside the composite wing-box structure has been performed. A software ANSYS (ver.11) was used to analyses the Aluminum wing to find the maximum stresses reached in. These results are used as a base for the composite wingbox to find the numbers of layers and location of the box beam and its dimensions so that the composite wingbox may carry the same loading conditions in the Aluminum wing. Analysis showed that a composite wingbox having two boxes is better than the single or triple boxes wing based on stress to weight ratio. Mass saving of (40%) had been achieved when composite wing-box is used instead of Aluminum wing.
This research explores the preparation of polypyrrole (PPy) using chemical oxidation and its enhancement with graphene oxide (GO) for optical sensor applications. PPy was synthesized by polymerizing pyrrole monomers with ferric chloride (Fe2Cl3) as the oxidant. The resulting PPy was then combined with GO to form a composite material, aiming to improve its electrical and optical properties. Polypyrrole nanofibers were obtained and after adding graphene oxide, the sensitivity increased. Characterization techniques including UV-Vis spectroscopy, DC conductivity measurements, Field Emission Scanning Electron Microscopy (FESEM) and response of photocurrent analysis were employed. The incorporation of GO into PPy resulted in a significant reducti
... Show More