In this paper, a compression system with high synthetic architect is introduced, it is based on wavelet transform, polynomial representation and quadtree coding. The bio-orthogonal (tap 9/7) wavelet transform is used to decompose the image signal, and 2D polynomial representation is utilized to prune the existing high scale variation of image signal. Quantization with quadtree coding are followed by shift coding are applied to compress the detail band and the residue part of approximation subband. The test results indicate that the introduced system is simple and fast and it leads to better compression gain in comparison with the case of using first order polynomial approximation.
In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the
... Show MoreIn many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreAbstract:
One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.
This research aims to estimate production functions through which production relations, possibilities for production elements substitution, measurement of its substitution elasticity, and efficiency and distribution coefficients can be analyzed. This would be done through estimation of constant elasticity of substitution production function for agricultural companies in Iraq depending on data from Iraqi Stock Exchange reports of 2005-2016. The researcher had used panel data model and estimated its three models: the Pooled Regression Model (PRM), the Fixed Effect Model (FEM) and the Random Effect Model (REM). A comparison was made for theses three models using F, LM, Husman tests. Tests show that Fixed Effect Model (FEM) is the best
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreThis paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-
... Show MoreThis paper suggest two method of recognition, these methods depend on the extraction of the feature of the principle component analysis when applied on the wavelet domain(multi-wavelet). First method, an idea of increasing the space of recognition, through calculating the eigenstructure of the diagonal sub-image details at five depths of wavelet transform is introduced. The effective eigen range selected here represent the base for image recognition. In second method, an idea of obtaining invariant wavelet space at all projections is presented. A new recursive from that represents invariant space of representing any image resolutions obtained from wavelet transform is adopted. In this way, all the major problems that effect the image and
... Show MoreIn this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
This paper presents a numerical simulation of the flow around elliptic groynes by using CFD software. The flow was simulated in a flume with 4m long, 0.4m wide, and 0.175m high with a constant bed slope. Moreover, the first Groyne placed at 1m from the flow inlet with a constant the Groyne height of 10cm and a 1cm thickness, and the width of Groynes equals 7cm. A submergence ratio of the elliptic Groynes of 75% was assumed, corresponding to a discharge of 0.0057m3/sec. The CFD model showed a good ability to simulate the flow around Groynes with good accuracy. The results of CFD software showed that when using double elliptic Groy
... Show More