This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivotal role in expediting diagnosis and treatment processes during medical emergencies. This study introduces an innovative protocol termed collaborative binary Naive Bayes decision tree (CBNBDT) designed to enhance packet classification and transmission prioritization. Through the utilization of this protocol, incoming packets are categorized based on their respective classes, enabling subsequent prioritization. Thorough simulations have demonstrated the superior performance of the proposed CBNBDT protocol compared to baseline approaches.
Despite the great economic and commercial importance given to real estate by virtue of its view of the landscape or public roads, US courts have differed in their position on compensation for damages resulting from blocking that view or vision by public projects. Some courts compensated for such damages, other courts approved such compensation. Hence, this research came to shed light on the extent of the possibility of compensation for blocking the view or vision as a result of public projects, and the research has supported us with many judicial decisions.
Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreA simple, fast, selective of a new flow injection analysis method coupled with potentiometric detection was used to determine vitamin B1 in pharmaceutical formulations via the prepared new selective membranes. Two electrodes were constructed for the determination of vitamin B1 based on the ion-pair vitamin B1-phosphotungestic acid (B1-PTA) in a poly (vinyl chloride) supported with a plasticized di-butyl phthalate (DBPH) and di-butyl phosphate (DBP). Applications of these ion selective electrodes for the determination of vitamin B1 in the pharmaceutical preparations for batch and flow injection systems were described. The ion selective membrane exhibited a near-Nernstian slope values 56.88 and 58.53 mV / decade, with the linear dy
... Show MoreGeophysical data interpretation is crucial in characterizing the subsurface structure. The Bouguer gravity map analysis of the W-NW region of Iraq serves as the basis for the current geophysical research. The Bouguer gravity data were processed using the Power Spectrum Analysis method. Four depth slices have been acquired after the PSA process, which are: 390 m, 1300 m, 3040 m, and 12600 m depth. The gravity anomaly depth maps show that shallow-depth anomalies are mainly related to the sedimentary cover layers and structures, while the gravity anomaly of the deeper depth slice of 12600 m is more presented to the basement rocks and mantle uplift. The 2D modeling technique was used for
Evolutionary algorithms are better than heuristic algorithms at finding protein complexes in protein-protein interaction networks (PPINs). Many of these algorithms depend on their standard frameworks, which are based on topology. Further, many of these algorithms have been exclusively examined on networks with only reliable interaction data. The main objective of this paper is to extend the design of the canonical and topological-based evolutionary algorithms suggested in the literature to cope with noisy PPINs. The design of the evolutionary algorithm is extended based on the functional domain of the proteins rather than on the topological domain of the PPIN. The gene ontology annotation in each molecular function, biological proce
... Show MoreThe purpose of the current investigation is to distinguish between working memory ( ) in five patients with vascular dementia ( ), fifteen post-stroke patients with mild cognitive impairment ( ), and fifteen healthy control individuals ( ) based on background electroencephalography (EEG) activity. The elimination of EEG artifacts using wavelet (WT) pre-processing denoising is demonstrated in this study. In the current study, spectral entropy ( ), permutation entropy ( ), and approximation entropy ( ) were all explored. To improve the classification using the k-nearest neighbors ( NN) classifier scheme, a comparative study of using fuzzy neighbourhood preserving analysis with -decomposition ( ) as a dimensionality reduction technique an
... Show MoreThis article investigates the decline of language loyalty in the age of audiovisual nearness. It is a socio-linguistic review of previous literature related to language disloyalty. It reviews the current theoretical efforts on the impact of audiovisual nearness created by social media and language loyalty. The descriptive design is used. The argument behind this review is that the audiovisual nearness provided by social media negatively affects language loyalty. This article concludes that the current theoretical efforts have paid much attention to the relationship between the audiovisual nearness and language loyalty. Such efforts have highlighted the fact that the social media platforms have provided unprecedented nearness that provoke in
... Show MoreBackground: Cystinosis is a rare autosomal recessive lysosomal storage disease with high morbidity and mortality. It is caused by mutations in the CTNS gene that encodes the cystine transporter, cystinosin, which leads to lysosomal cystine accumulation. It is the major cause of inherited Fanconi syndrome, and should be suspected in young children with failure to thrive and signs of renal proximal tubular damage. The diagnosis can be missed in infants, because not all signs of renal Fanconi syndrome are present during the first months of life. Elevated white blood cell cystine content is the cornerstone of the diagnosis. Since chitotriosidase (CHIT1 or chitinase-1) is mainly produced by activated macrophages both in normal and inflammator
... Show More