This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivotal role in expediting diagnosis and treatment processes during medical emergencies. This study introduces an innovative protocol termed collaborative binary Naive Bayes decision tree (CBNBDT) designed to enhance packet classification and transmission prioritization. Through the utilization of this protocol, incoming packets are categorized based on their respective classes, enabling subsequent prioritization. Thorough simulations have demonstrated the superior performance of the proposed CBNBDT protocol compared to baseline approaches.
Background: Odontogenic tumors are a diverse group of lesions with a variety of clinical behavior and histopathologic subtypes, from hamartomatous and benign to malignant. The study aimed to examine the clinical and pathological features of odontogenic tumors in Baghdad over the last 11 years (2011–2021). Materials and Methods: The present retrospective study analyzed all formalin-fixed, paraffin-embedded tissue blocks of patients diagnosed with an odontogenic tumor that were retrieved from archives at a teaching hospital/College of Dentistry in Baghdad University, Iraq, between 2011 and 2021. The diagnosis of each case was confirmed by examining the hematoxylin and eosin stained sections by two expert pathologists. Data from pati
... Show MoreA novel fractal design scheme has been introduced in this paper to generate microstrip bandpass filter designs with miniaturized sizes for wireless applications. The presented fractal scheme is based on Minkowski-like prefractal geometry. The space-filling property and self-similarity of this fractal geometry has found to produce reduced size symmetrical structures corresponding to the successive iteration levels. The resulting filter designs are with sizes suitable for use in modern wireless communication systems. The performance of each of the generated bandpass filter structures up to the 2nd iteration has been analyzed using a method of moments (MoM) based software IE3D, which is widely adopted in microwave research and in
... Show MoreThere has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide very low bit error rates (BER) along with information security. As more and more information is transacted over wireless media, there has been increasing criminal activity directed against such systems. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. We have studied the performance of differential chaos shift keying (DCSK) with 2×2 Alamouti scheme and 2×1 Alamouti scheme for different chaotic maps over additive white Gaussian noise (
... Show MoreMobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show MoreThis paper demonstrates the design of an algorithm to represent the design stages of fixturing system that serve in increasing the flexibility and automation of fixturing system planning for uniform polyhedral part. This system requires building a manufacturing feature recognition algorithm to present or describe inputs such as (configuration of workpiece) and built database system to represents (production plan and fixturing system exiting) to this algorithm. Also knowledge – base system was building or developed to find the best fixturing analysis (workpiece setup, constraints of workpiece and arrangement the contact on this workpiece) to workpiece.
Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreElectromyography (EMG) is being explored for evaluating muscle activity. For gait analysis, EMG needs to be small, lightweight, portable device, and with low power consumption. The proposed superficial EMG (sEMG) system is aimed to be used in rehabilitation centers and biomechanics laboratories for gait analysis in Iraq.
The system is built using MyoWare, which is controlled by using STM32F100 microcontroller. The sEMG signal is transferred via Bluetooth to the computer (about 30m range) for further processing. MATLAB is used for sEMG signal conditioning. The overall system cost (without computer) is about $80. The proposed system is validated using wired NORAXON EMG using the mean root mean squared metho
... Show More