In this work magnetite/geopolymer composite (MGP) were synthesized using a chemical co-precipitation technique. The synthesized materials were characterized using several techniques such as: “X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample-magnetometer (VSM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET) and Barrentt-Joyner-Halenda (BJH)” to determine the structure and morphology of the obtained material. The analysis indicated that metal oxide predominantly appeared at the shape of the spinel structure of magnetite, and that the presence of nano-magnetite had a substantial impact on the surface area and pore structure of the geopolymer. Geopolymer and MGP specific surface areas were determined to be 26.60 and 69.04m2/g, respectively. MGP was utilized as an adsorbent for the removal of antibiotic (tetracycline) to demonstrate the role of after precipitating on the geopolymer surface. It was found that a 10% /geopolymer mass ratio had excellent adsorption performance towards tetracycline (TC), with a removal rate of more than 90%, which was much greater than that of individual and geopolymer. The Langmuir and Freundlish models provided an accurate description of the experimental data.
The current study included details of the anatomical characteristics of vegetative parts including the root, stem, leaf in cultivated Iraq for the species Brassciaaleraceacabbage, where the study dealt with the stomatal index and the rate of both the length and width of the stomatal complex and the thickness of the periderm, the tissue, cortex, vascular cylinder and pith. The parts were taken and measured after the plant was treated with brassinolide and the treated species with brassinolide and non-treated were measured and the study showed that there was a clear variation in the properties above.
Corncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitate
... Show MoreMarkov chains are an application of stochastic models in operation research, helping the analysis and optimization of processes with random events and transitions. The method that will be deployed to obtain the transient solution to a Markov chain problem is an important part of this process. The present paper introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This study presents a one-step second-derivative method with better accuracy in solving the first-order Initial Value Problem
... Show More