In the digital age, protecting intellectual property and sensitive information against unauthorized access is of paramount importance. While encryption helps keep data private and steganography hides the fact that data are present, using both together makes the security much stronger. This paper introduces a new way to hide encrypted text inside color images by integrating discrete wavelet transform (DWT), discrete cosine transform (DCT), and singular value decomposition (SVD), along with AES-GCM encryption, to guarantee data integrity and authenticity. The proposed method operates in the YCbCr color space, targeting the luminance (Y) channel to preserve perceptual quality. Embedding is performed within the HL subband obtained from DWT decomposition via SVD coefficients extracted from DCT-transformed images in the midfrequency band. A content-aware strategy combining Gaussian blurring, Canny edge detection, and zigzag scanning is employed to increase robustness against image processing attacks. The experimental results demonstrate the effectiveness of the proposed approach, which achieves up to a 10.4% improvement in PSNR, an SSIM score of 0.996, and a 0.10% increase in NCC over those of previous methods, which mostly rely on grayscale images. These results reflect the ability of the system to maintain high visual quality while offering strong resilience and security for embedded data in full-color images.
This study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5NPs were determined using the (EDX) pattern, Atomic force microscopy AFM. The a
... Show MoreThe present work is an attempt to develop design data for an Iraqi roof and wall constructions using the latest ASHRAE Radiant Time Series (RTS) cooling load calculation method. The work involves calculation of cooling load theoretically by introducing the design data for Iraq, and verifies the results experimentally by field measurements. Technical specifications of Iraqi construction materials are used to derive the conduction time factors that needed in RTS method calculations. Special software published by Oklahoma state university is used to extract the conduction factors according to the technical specifications of Iraqi construction materials. Good agreement between the average theoretical and measured cooli
... Show MoreThis study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreThe bound radial wave functions of Cosh potential which are the solutions to the radial part of Schrodinger equation are solved numerically and used to compute the size radii; i.e., the root-mean square proton, neutron, charge and matter radii, ground density distributions and elastic electron scattering charge form factors for nitrogen isotopes 14,16,18,20,22N. The parameters of such potential for the isotopes under study have been opted so as to regenerate the experimental last single nucleon binding energies on Fermi's level and available experimental size radii as well.
: The need for means of transmitting data in a confidential and secure manner has become one of the most important subjects in the world of communications. Therefore, the search began for what would achieve not only the confidentiality of information sent through means of communication, but also high speed of transmission and minimal energy consumption, Thus, the encryption technology using DNA was developed which fulfills all these requirements [1]. The system proposes to achieve high protection of data sent over the Internet by applying the following objectives: 1. The message is encrypted using one of the DNA methods with a key generated by the Diffie-Hellman Ephemeral algorithm, part of this key is secret and this makes the pro
... Show MoreThe Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat
... Show More