According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
A new class of higher derivatives for harmonic univalent functions defined by a generalized fractional integral operator inside an open unit disk E is the aim of this paper.
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
The purpose of this paper is to study the properties of the
partial level density ( ) l g and the total level density g ( ),
numerically obtained as a l sum of ( ) l g up to 34 max l , for
a Harmonic – Oscillator potential well. This method applied the
quantum – mechanical phase shift technique and concentrated
on the continuum region. Also a discussion of peculiarities of
quantal calculation for single particle level density of energy –
dependent potential
The ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.
This paper is interested in certain subclasses of univalent and bi-univalent functions concerning to shell- like curves connected with k-Fibonacci numbers involving modified Sigmoid activation function θ(t)=2/(1+e^(-t) ) ,t ≥0 in unit disk |z|<1 . For estimating of the initial coefficients |c_2 | , |c_3 |, Fekete-Szego ̈ inequality and the second Hankel determinant have been investigated for the functions in our classes.
Compaction curves are widely used in civil engineering especially for road constructions, embankments, etc. Obtaining the precise amount of Optimum Moisture Content (OMC) that gives the Maximum Dry Unit weight gdmax. is very important, where the desired soil strength can be achieved in addition to economic aspects.
In this paper, three peak functions were used to obtain the OMC and gdmax. through curve fitting for the values obtained from Standard Proctor Test. Another surface fitting was also used to model the Ohio’s compaction curves that represent the very large variation of compacted soil types.
The results showed very good correlation between the values obtained from some publ
... Show More