In this study, dynamic encryption techniques are explored as an image cipher method to generate S-boxes similar to AES S-boxes with the help of a private key belonging to the user and enable images to be encrypted or decrypted using S-boxes. This study consists of two stages: the dynamic generation of the S-box method and the encryption-decryption method. S-boxes should have a non-linear structure, and for this reason, K/DSA (Knutt Durstenfeld Shuffle Algorithm), which is one of the pseudo-random techniques, is used to generate S-boxes dynamically. The biggest advantage of this approach is the production of the inverted S-box with the S-box. Compared to the methods in the literature, the need to store the S-box is eliminated. Also, the fabrication of the S-box has a very large key space as it depends on the user's key. The encryption-decryption method allows changing pixel positions with the help of dynamically generated S-boxes, images, videos, etc. Thus, the study shows that a new method of S-boxes for dynamic cipher algorithms can be easily generated and applied to image encryption.
Although the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory
This research aims to understand complexity management and its impact on the use of the dynamic capabilities of a sample of private colleges. Private colleges are currently facing many crises, changes, unrest and high competitive pressures. Which is sometimes difficult or even impossible to predict. The recruitment of dynamic capabilities is also one of the challenges facing senior management at private colleges to help them survive and survive. Thus, the problem of research was (there is a clear insufficiency of interest in Complexity Management and trying to employ it in improving the dynamic capabilities of Colleges that have been discussed?). A group of private colleges was selected as a
... Show MoreMaintaining and breeding fish in a pond are a crucial task for a large fish breeder. The main issues for fish breeders are pond management such as the production of food for fishes and to maintain the pond water quality. The dynamic or technological system for breeders has been invented and becomes important to get maximum profit return for aquaponic breeders in maintaining fishes. This research presents a developed prototype of a dynamic fish feeder based on fish existence. The dynamic fish feeder is programmed to feed where sensors detected the fish's existence. A microcontroller board NodeMCU ESP8266 is programmed for the developed h
... Show MoreIn earthquake engineering problems, uncertainty exists not only in the seismic excitations but also in the structure's parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of a multi-story moment resisting frame subjected to random ground motion. The North-south component of the Ali Gharbi earthquake in 2012, Iraq, is selected as ground excitation. Using the power spectral density function (PSD), the two-dimensional finite element model of the moment resisting frame's base motion is modified to account for random ground motion. The probabilistic study of the moment resisting frame structure using stochastic fin
... Show MoreIn this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic fa
This paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable cl
... Show MoreDelays and disruption are a common issue in both community and personal building programs The problem exists all throughout the world, but it is particularly prevalent in Iraq, where millions of dollars are squandered each time as a outcome. Delays and interruptions may have serious consequences not just for Iraq's construction plans, but also for the country's economic and social status. While numerous studies have been conducted to investigate the factors driving delays and disruption in Iraqi construction projects, slight consideration has been given to by what means project management implements and approaches have affected the occurrence of project delays and disruption. After analyzing the crucial reasons for delays and instability in
... Show MoreIn this research velocity of moving airplane from its recorded digital sound is introduced. The data of sound file is sliced into several frames using overlapping partitions. Then the array of each frame is transformed from time domain to frequency domain using Fourier Transform (FT). To determine the characteristic frequency of the sound, a moving window mechanics is used, the size of that window is made linearly proportional with the value of the tracked frequency. This proportionality is due to the existing linear relationship between the frequency and its Doppler shift. An algorithm was introduced to select the characteristic frequencies, this algorithm allocates the frequencies which satisfy the Doppler relation, beside that the tra
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show More