Preferred Language
Articles
/
B0KtSJoBMeyNPGM3_MDK
The operational matrices for Elliptic Partial Differential Equations with mixed boundary conditions
...Show More Authors
Abstract<p>The purpose of this research is to implement the orthogonal polynomials associated with operational matrices to get the approximate solutions for solving two-dimensional elliptic partial differential equations (E-PDEs) with mixed boundary conditions. The orthogonal polynomials are based on the Standard polynomial (<italic>x<sup>i</sup> </italic>), Legendre, Chebyshev, Bernoulli, Boubaker, and Genocchi polynomials. This study focuses on constructing quick and precise analytic approximations using a simple, elegant, and potent technique based on an orthogonal polynomial representation of the solution as a double power series. Consequently, a linear partial differential equation is transformed into a linear algebraic system which is solved by the Mathematica®12. Approximate solutions can be found if the answers are polynomials in and of itself. Three applications involving well-known linear problems Laplace, Poisson, and Helmholtz equations have been solved by using the proposed methods, and a comparison of the approaches has been provided. Furthermore, the computation of the error norm <italic>L<sub>∞</sub> </italic> has been done to show the accuracy of the suggested approaches. The results clearly demonstrate how precise, efficient, and dependable the proposed methods are in obtaining rough solutions to the problem. Bernoulli was one of the best methods in most examples.</p>
Scopus Crossref
View Publication
Publication Date
Mon Mar 09 2015
Journal Name
Monthly Notices Of The Royal Astronomical Society
A reliable iterative method for solving Volterra integro-differential equations and some applications for the Lane–Emden equations of the first kind
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations
...Show More Authors

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication
Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods
...Show More Authors

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Novel approximate solution for fractional differential equations by the optimal variational iteration method
...Show More Authors

View Publication
Crossref (42)
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Novel approximate solution for fractional differential equations by the optimal variational iteration method
...Show More Authors

Crossref (42)
Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Analytical Solutions for Advanced Functional Differential Equations with Discontinuous Forcing Terms and Studying Their Dynamical Properties
...Show More Authors

This paper aims to find new analytical closed-forms to the  solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
1st Samarra International Conference For Pure And Applied Sciences (sicps2021): Sicps2021
Solving the created ordinary differential equations from Lomax distribution
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Oscillations of First Order Neutral Differential Equations with Positive and Negative Coefficients
...Show More Authors

Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.

View Publication Preview PDF
Crossref
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Analytical approximate solutions of random integro differential equations with laplace decomposition method
...Show More Authors

An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT

... Show More
Scopus (3)
Scopus
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Approximated Methods for Linear Delay Differential Equations Using Weighted Residual Methods
...Show More Authors

The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).

View Publication Preview PDF
Crossref