Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at different conditions. In addition, contact angle measurements on quartz surfaces were also conducted at similar conditions to understand the flow behavior in the porous media. Further, zeta potential and particle size distribution measurements were conducted to examine the stability of the injected nanofluids. Results revealed that the injection of nanofluids into oil-wet pore space can significantly enhance the recovery rate of hydrocarbon by altering the wettability of the porous media. However, salinity, particularly at high nanoparticles concentration (≥ 0.005) can dramatically reduce the efficiency of nanofluid. Further, increased aging time can improve the ability of nanofluid to alter the wettability of the surface, and thus more oil can be displaced. Thus, nanofluid can efficiently enhance oil recovery if correctly formulated.
The analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is
... Show MoreA.C electrical conductivity and dielectric properties for poly
(vinyl alcohol) (PVA) /poly (ethylene oxide) (PEO) blends undoped
and doped with multi-walled carbon nanotube (MWCNTs) with
different concentrations (1, and 3 wt %) in the frequency range
(25x103 - 5x106 Hz) were investigated. Samples of (PVA/PEO)
blends undoped and doped with MWCNTs were prepared using
casting technique. The electrical conductivity measurements showed
that σA.C is frequency dependent and obey the relation σA.C =Aωs for
undoped and doped blends with 1% MWCNTs, while it is frequency
independent with increases of MWCNTs content to 3%. The
exponent s showed proceeding increase with the increase of PEO
ratio (≥50%) for undope
CuO nanoparticles were synthesized in two different ways, firstly by precipitation method using copper acetate monohydrate Cu(CO2CH13)2·H2O, glacial acetic acid (CH3COOH) and sodium hydroxide(NaOH), and secondly by sol-gel method using copper chloride(CuCl2), sodium hydroxide (NaOH) and ethanol (C2H6O). Results of scanning electron microscopy (SEM) showed that different CuO nanostructures (spherical and Reef) can be formed using precipitation and sol- gel process, respectively, at which the particle size was found to be less than 2 µm. X-ray diffraction (XRD)manifested that the pure synthesized powder has no inclusions that may exist during preparations. XRD result
... Show MorePeriodontitis is a chronic inflammatory disease resulted from aggravated immune response to a dysbiotic subgingival microbiota of a susceptible host. Consequences of periodontitis are not only limited to the devastating effect on the oral cavity but extends to affect general health of the individual and also exerts economic burdens on the health systems worldwide. Despite these serious outcomes of periodontitis; however, they are avoidable by early diagnosis with proper preventive measures or non-invasive interventions at earlier stages of the disease. Clinically, diagnosis of periodontitis could be overlooked due to certain limitations of the conventional diagnostic methods such as periodontal charting and radiographs. Utilization of re
... Show MoreTwo samples of (Ag NPs-zeolite) nanocomposite thin films have been prepared by easy hydrothermal method for 4 hours and 8 hours inside the hydrothermal autoclave at temperatures of 100°C. The two samples were used in a photoelectrochemical cell as a photocatalyst inside a cell consisting of three electrodes: the working electrode photoanode (AgNPs-zeolite), platinum as a cathode electrode, and Ag/AgCl as a reference electrode, to study the performance of AgNPs-zeolite under dark current and 473 nm laser light for water splitting. The results show the high performance of an eight-hour sample with high crystallinity compared with a four-hour sample as a reliable photocatalyst to generate hydrogen for renewable energies.
Cerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreThis paper presents designing an adaptive state feedback controller (ASFC) for a magnetic levitation system (MLS), which is an unstable system and has high nonlinearity and represents a challenging control problem. First, a nonadaptive state feedback controller (SFC) is designed by linearization about a selected equilibrium point and designing a SFC by pole-placement method to achieve maximum overshoot of 1.5% and settling time of 1s (5% criterion). When the operating point changes, the designed controller can no longer achieve the design specifications, since it is designed based on a linearization about a different operating point. This gives rise to utilizing the adaptive control scheme to parameterize the state feedback controll
... Show MoreAneurysms of the cortical branches of the middle cerebral artery (MCA) are rare. They usually are secondary to traumatic or infectious etiologies and are rarely idiopathic. The specific characteristics of idiopathic aneurysms in such location are not well defined in the literature. The authors report a rare case of a ruptured giant idiopathic cortical MCA aneurysm with review of the available literature on this clinical entity.
A 24-year-old female presented with headache, disturbed level of consciousness, and right-sided weakness. Imaging studies showed a left frontoparietal intracer