The coordination ability of the azo-Schiff base 2-[1,5-Dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethyl imino]-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylazo]-5- hydroxy-benzoic acid has been proven in complexation reactions with Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) ions. The free ligand (LH) and its complexes were characterized using elemental analysis, determination of metal concentration, magnetic susceptibility, molar conductivity, FTIR, Uv-Vis, (1H, 13C) NMR spectra, mass spectra and thermal analysis (TGA). The results confirmed the coordination of the ligand through the nitrogen of the azomethine, Azo group (Azo) and the carboxylate ion with the metal ions. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are calculated from the TGA curves using Coats– Redfern method. Hyper Chem-8 program has been used to predict structural geometries of compounds in the gas phase. The synthesized ligands and their metal complexes were screened for their biological activity against bacterial species, two Gram positive bacteria (Bacillus subtillis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aereuguinosa)
Samarium ions (Sm +3), a rare-earth element, have a significant optical emission within the visible spectrum. PMMA samples, mixed with different ratios of SmCl3.6H2O, were prepared via the casting method. The composite was tested using UV-visible, photoluminescence and thermogravimetric analysis (TGA). The FTIR spectrometry of PMMA samples showed some changes, including variation in band intensity, location, and width. Mixed with samarium decreases the intensity of the CO and CH2 stretching bands and band position. A new band appeared corresponding to ionic bonds between samarium cations with negative branches in the polymer. These variations indicate complex links between the Sm +3 ion and oxygen in the ether group. The optical absorption
... Show MoreObjective: The objective of the present study was to design and optimize oral fast dissolving film (OFDF) of practically insoluble drug lafutidine in order to enhance bioavailability and patient compliance especially for a geriatric and unconscious patient who are suffering from difficulty in swallowing.Methods: The films were prepared by a solvent casting method using low-grade hydroxyl propyl methyl cellulose (HPMC E5), polyvinyl alcohol (PVA), and sodium carboxymethyl cellulose (SCMC) as film forming polymers. Polyethylene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer to enhance the film forming properties of the polymer. Tween 80 (1% solution) and poloxamer407 were used as a surfactant, citri
... Show MoreBackground: The marginal seal is essential for sealant success because penetration of bacteria under the sealant might allow caries onset or progression. The aim of the present study was to estimate and compare the microleakage of pit and fissure sealant after various methods of occlusal surface preparation. Materials and methods: Thirty non-carious premolars extracted for orthodontic reasons were equally divided into three groups. In group one, occlusal fissures were opened with round carbide bur, in group two, occlusal surfaces of the teeth were cleaned with a dry pointed bristle brush and samples of group three were cleaned with a slurry of fine flour of pumice in water using rubber cup. Then fissures of all teeth were etched using 35% p
... Show MoreThis study aims to develop a thermosensitive mucoadhesive periodontal in situ gel of secnidazole for local release of drug for treatment of periodontitis, in order to increase the drug residence time and to increase patient compliance while lowering the side effects of the drug.
Cold method was used to prepare 30 formulas of secnidazole periodontal in situ gel, using different concentrations of thermosensitive polymers (poloxamer407 alone or in combination with poloxamer 188) and methyl cellulose (MC ) or hydroxypropyl methylcellulose (HPMC K4M )in different concentrations used as mucoadhesive polymer and the resultant formulations were subjected to several tests such as gelation temperature GT, appearance and pH value. The fo
... Show MorePure grade II titanium disks were coated with a thin coating of polyetherketoneketone (PEKK) polymer by RF magnetron sputtering using either nitrogen or argon gas. Sputtering technique was employed at 50 W for one hour at 60°C with continuous flow of nitrogen or argon gas. Field-emission scanning electron microscopy (FE-SEM) showed a continuous, homogeneous, rough PEKK surface coating without cracks. In addition, cross-sectional FE-SEM revealed an average coat thickness of 1.86 μm with argon gas and 1.96 μm with nitrogen gas. There was homogenous adhesion between the coating layer and substrate. The elemental analysis of titanium substrate revealed the presence of carbon, titanium, and oxygen. The RF magnetron sputtering with argon or ni
... Show MoreThe ceramic compound Mg1-xSixAl2O4 (x= 0, 0.1, 0.2, 0.3, 0.4) was prepared from nano powder of Al2O3 and MgO doped with Nano powder of SiO2 at different molar ratios. The specimens were prepared by standard chemical solid reaction technique and sintered at 1450 oC. Structure of the specimens was analyzed by using X-ray diffraction (XRD). The X-ray patterns of the specimens showed the formation of pure simple cubic spinel structure MgAl2O4 phase with space group of ̅ . The average grain size and surface topology were studied by atomic force microscopy. The results showed that the average grain size was about 73-90 nm. The DC electrical properties of the specimen were measured. The apparent density was found to increase and the porosity a
... Show MoreThe structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t
... Show MoreThe influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.
... Show MoreThis study reports the fabrication of tin oxide (SnO2) thin films using pulsed laser deposition (PLD). The effect of 60Co (300, 900, and 1200 Gy) gamma radiation on the structural, morphological, and optical features is systematically demonstrated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and ultraviolet-visible light analysis (UV-Vis), respectively In XRD tests, the size of the crystallites decreased from 45.5 to 40.8 nm for the control samples and from 1200 Gy to 60Co for the irradiated samples. Using FESEM analysis, the particle diameter revealed a similar trend to that attained using XRD; in particular, the average diameters were 93.8 and
... Show MoreA Laced Reinforced Concrete (LRC) structural element comprises continuously inclined shear reinforcement in the form of lacing that connects the longitudinal reinforcements on both faces of the structural element. This study conducted a theoretical investigation of LRC deep beams to predict their behavior after exposure to fire and high temperatures. Four simply supported reinforced concrete beams of 1500 mm, 200 mm, and 240 mm length, width, and depth, respectively, were considered. The specimens were identical in terms of compressive strength ( 40 MPa) and steel reinforcement details. The same laced steel reinforcement ratio of 0.0035 was used. Three specimens were burned at variable durations and steady-state temperatures (one
... Show More