Image recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third level. The two techniques that have the best results which are (sww and www) are chosen, then image recognition is applied to these two techniques using Euclidean distance and Manhattan distance and a comparison between them has been implemented., it is concluded that, sww technique is better than www technique in image recognition because it has a higher match performance (100%) for Euclidean distance and Manhattan distance than that in www..
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreIn this paper, a comparison between horizontal and vertical OFET of Poly (3-Hexylthiophene) (P3HT) as an active semiconductor layer (p-type) was studied by using two different gate insulators (ZrO2 and PVA). The electrical performance output (Id-Vd) and transfer (Id-Vg) characteristics were investigated using the gradual-channel approximation model. The device shows a typical output curve of a field-effect transistor (FET). The analysis of electrical characterization was performed in order to investigate the source-drain voltage (Vd) dependent current and the effects of gate dielectric on the electrical performance of the OFET. This work also considered the effects of the capacitance semiconductor on the performance OFETs. The value
... Show MoreThe vast advantages of 3D modelling industry have urged competitors to improve capturing techniques and processing pipelines towards minimizing labour requirements, saving time and reducing project risk. When it comes to digital 3D documentary and conserving projects, laser scanning and photogrammetry are compared to choose between the two. Since both techniques have pros and cons, this paper approaches the potential issues of individual techniques in terms of time, budget, accuracy, density, methodology and ease to use. Terrestrial laser scanner and close-range photogrammetry are tested to document a unique invaluable artefact (Lady of Hatra) located in Iraq for future data fusion sc
Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati
... Show MoreHere, a high sensitive method for biomarker identification according to nanostructure, using enzyme-linked immunosorbent assays (ELISAs), called Nano-ELISA, was presented. Different shapes of gold nanostructures (star and sphere; GNSs and GNPs) with a particle size of 40 nm for sphere particles were altered with a monoclonal antibody (Ab) as a detector Ab. To amplify the optical signal, gold nanostructures were employed as carriers of the signaling specific antibody against insulin growth factor binding protein- 3 (IGFBP-3). The substrate was catalytically oxidized by the Horseradish Peroxidase (HRP) conjugated gold nanostructure, and HRP also enhanced the optical signals, reflecting the amount of the targeting IGFBP-3. In comparison to t
... Show MoreThis paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC
... Show MoreAttacking a transferred data over a network is frequently happened millions time a day. To address this problem, a secure scheme is proposed which is securing a transferred data over a network. The proposed scheme uses two techniques to guarantee a secure transferring for a message. The message is encrypted as a first step, and then it is hided in a video cover. The proposed encrypting technique is RC4 stream cipher algorithm in order to increase the message's confidentiality, as well as improving the least significant bit embedding algorithm (LSB) by adding an additional layer of security. The improvement of the LSB method comes by replacing the adopted sequential selection by a random selection manner of the frames and the pixels wit
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show More