No-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference molds in age 28 days. The growing in flexural strength for fiber reinforced mixes with fiber by vol. (0.5%, 0.75%, 1%) were (78%, 132%, 286%) respectively at age of 28 days.
The effect of internal acoustic excitation on the leading-edge, separated boundary layers and the aerodynamic performance of NACA23015 cross section airfoil are examined as a function of excitation location with ranging frequency range (50-400) Hz of the introduced acoustic. Tests are separately conducted in two sections, open type wind tunnels at the Reynolds number of 3.3x105 for measurement at angle of attack (0, 3, 6, 9 &12) deg. and 3x104 for the visualization at angle of attack (12) deg. based on the airfoil chord. Results indicated that the excitation frequency and the excitation location are the key parameters to alter the flow properties and thus to improve the aerodynamic performance. The most effective excitation frequency
... Show MoreThe change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated dep
In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreThe interlaminar fracture toughness of polymer blends reinforced by glass fiber has
been investigated. Epoxy (EP), unsaturated polyester(UPE), polystyrene (PS),
polyurethane (PU) and their blends with different ratios (10%PS/90%EP),
(20%PS/80%EP), (20%PU/80%EP) and (20%PU/80%UPE) were chosen as a matrices A
sheet of composites were prepared using hand lay -up method, these sheet were cut as the
double cantilever beam (DCB) specimen to determine interlaminar fracture toughness of
these composites .Its found that, blending of EP,UPE with 20% of PU will improve the
interlaminar fracture toughness ,but the adding of 10% PS, 20%PS to EP will decrease
the interlaminar toughness of these composites.
Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications. Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different proce
... Show MoreAbstract
The fiber Bragg grating (FBG) technology has been rapidly applied in the sensing technology field. In this work, uniform FBG was used as pressure sensor based on measuring related Bragg wavelength shift. The pressure was applied directly by air compressor to the sensor and the pressure was ranged from 1 to 6 bar.
This sensor also was affected by the external temperature so as a result it could be used as a temperature sensor. This sensor could be used to monitor the pressure of dams. It has been shown from the result that the sensor is very sensitive to the pressure and the sensitivity was (67 pm\bar) and is very sensitive to temperature and the sensitivity was (10p
... Show MoreThe result of a developed mathematical model for predicting the design
parameters of the fiber Raman amplifier (FRA) are demonstrated. The amplification
parameters are tested at different pump power with different fiber length. Recently,
the FRA employed in optical communication system to increase the repeater distance
as will as the capacity of the communication systems. The output results show, that
high Raman gain can be achieved by high pumping power, long effective area that
need to be small for high Raman gain. High-stimulated Raman gain coefficient is
recommended for high Raman amplifier gain, the low attenuation of the pump and the
transmitted signal in the fiber lead to high Raman gain.
Carbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MoreA field experiment was conducted in an agricultural field in Al-Hindia district, Karbala governorate in a silty clay soil during the year 2020. The research included a study of two factors, the first is the depth of plowing at two levels, namely 13 and 20 cm, which represented the main blocks. The second is the tire inflation pressure at two levels, namely (70 and 140 kPa), which represented the secondary blocks. Slippage percentage, field efficiency, leaf area, and 300 grain weight were studied. The experiment was carried out using a split-plot system under a Randomized complete block design, at three replications. The tillage depth of 13 cm exceeds/transcend by giving it the least slippage of (11.01%), the highest field efficiency of (50.
... Show MoreThe influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa).
To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the seco
... Show More