The alluvial fan of Mandali located between latitude 30˚45’00” N longitude 45˚30’00” E in east of Diyala Governorate, Iraq. Thirty-five wells were identified in the study area with average depth of 84 m and estimated area of 21550 ha. A three-dimensional conceptual model was prepared by using GMS program. From wells cross sections, four geological layers have been identified. The hydraulic conductivity of these layers was calculated for steady state condition, where the water levels for nine wells distributed over the study area were observed at same time. Afterward, PEST facility in the GMS was used to estimate the aquifer hydraulic characteristics. Other characteristics such as storage coefficient and specific yield have been determined from one year field observations that were collected by General Authority of Groundwater, Diyala Governorate. Also, the observations were used for calibration of unsteady state model. Then wells were hypothetically redistributed and increased to 103 wells, assuming a distance of 1500 m between the wells, a well productivity rate of were 7 l/s, annual rainfall rate was used for recharging. Three different wells operating times were suggested and these 6, 12, and 18 hr/day with total discharge of 150, 300, 450 m3/day and maximum drawdown of 7, 11, and 20 m respectively. For water quality assessment, the collected groundwater samples were analysed at the laboratory. Results showed that the TDS in all wells was ranged from 1000-3000 mg/l but TDS in well number 18 was exceeded 3000 mg/l which indicate that the groundwater in this well is not recommended to be used for irrigation. According to Iraqi standard for drink (IQS 2009), it can be used for drinking if saline treatment units were provided.
A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to
... Show MoreThis paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis.
The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate t
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreUse of lower squares and restricted boxes
In the estimation of the first-order self-regression parameter
AR (1) (simulation study)
The research emphasizes importance of preliminary drawings in design of any product. Therefore, using of simulation as tools for visual thinking in developing drawing and design skills. So that practice of drawing by hand, considering shape of ideas in first stage of visualizations, and practice of its techniques and continuous training.
Hence, the research problem arose with the role of simulation method for developing preliminary sketches in the sample of students of the Product Design Department at the College of Design and Art, PNU, as it is important tool for visual thinking that helps the designer in designing and producing innovative artistic works.
Therefore, the research axes, a number of findings and recommendations were
The last decade has seen a variety of modifications of glass-ionomer cements (GICs), such as inclusion of bioactive glass particles and dispensing systems. Hence, the aim was to systematically evaluate effect of mixing modes and presence of reactive glass additives on the physical properties of several GICs.
The physical properties of eight commercial restorative GICs; Fuji IX GP Extra (C&H), KetacTM Fill Plus Applicap (C&H), Fuji II LC (C&H), Glass Carbomer Ce
Background: Although bleaching is typically considered a safe procedure, various investigations have found minor negative effects and changes in mineral composition. The aim was to Evaluate and compare the efficacy of using Nanohydroxyapatite serum on surface microhardness of enamel surface before and after bleaching with chemically cured Boost bleaching. Material and methods: ten sound human permanent upper and lower premolar teeth were used and their roots were removed 2 mm apically to the cementoenamel junction, the crowns were sectioned mesiodistally into two halves buccal and lingual/palatal, the buccal surface was further subdivided into two halves. The samples were embeded in an acrylic resin, resulting in 30 specimens divide
... Show More