Physics and applied mathematics form the basis for understanding natural phenomena using differential equations depicting the flow in porous media, the motion of viscous liquids, and the propagation of waves. These equations provide a thorough study of physical processes, enhancing the understanding of complex applications in engineering, technology, and medicine. This paper presents novel approximate solutions for the Darcy-Brinkmann-Forchheimer moment equation, the Blasius equation and the FalknerSkan equation with initial / boundary conditions by using two iterative methods: the variational iteration method and the optimal variational iteration method. The variational iteration method is effectively developed by adding a control parameter to enhance the convergence speed and prevent large-scale divergence. The influence of physical parameters on the accuracy of the solution was also analyzed, since it was noted that increasing some parameters improves accuracy, while increasing others leads to a decrease the accuracy. Also, the convergence of the proposed methods has been discussed and proved. Moreover, comparison was made with some approximate methods available in the literature were used the operational matrices methods include: Bernstein's method (BOM), Bernoulli's method (BrOM), and the shifted Legendre’s method (LOM). Furthermore, the maximum values of the residual error were computed for the proposed methods and others operational matrices methods for different cases. The results demonstrated the efficiency and accuracy of the optimal variational iteration method in solving nonlinear ordinary differential equations in comparison to other methods. All calculations in this paper were made using the Mathematica®14 software.
This paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving nonli
... Show MoreThe deployment of UAVs is one of the key challenges in UAV-based communications while using UAVs for IoT applications. In this article, a new scheme for energy efficient data collection with a deadline time for the Internet of things (IoT) using the Unmanned Aerial Vehicles (UAV) is presented. We provided a new data collection method, which was set to collect IoT node data by providing an efficient deployment and mobility of multiple UAV, used to collect data from ground internet of things devices in a given deadline time. In the proposed method, data collection was done with minimum energy consumption of IoTs as well as UAVs. In order to find an optimal solution to this problem, we will first provide a mixed integer linear programming m
... Show MoreThe aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.
Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.
We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).
The results proved that the (ANN) estimator is the best nonlinear estimator am
... Show MoreThis study aims to use claystone beds exposed in the Injana Formation (Late Miocene) at Karbala-Najaf plateau, middle of Iraq for the manufacturing of perforated and ordinary bricks. The claystone samples were assessed as an alternative material of the recent sediments, which are preferred to remain as agricultural land. The claystones are sandy mud composing of 29.1 - 39.1% clay, 37.2 - 54.8% silt and 14.1-26.8% sand. They consist of kaolinite, illite, chlorite, palygorskite, and montmorillonite with a lot of quartz, calcite, dolomite, gypsum and feldspar. Claystone samples were characterized by linear shrinkage 0.01 - 0.1%, volume shrinkage 0.1 - 0.9%, bulk density 1.2 - 2.11gm/cm3 (1.68 g / cm3 average), and the efflorescence is
... Show MoreThere are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
An Optimal Algorithm for HTML Page Building Process
In present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.