The Ratawi Oil Field (ROF) is one of Iraq's most important oil fields because of its significant economic oil reserves. The major oil reserves of ROF are in the Mishrif Formation. The main objective of this paper is to assess the petrophysical properties, lithology identification, and hydrocarbon potential of the Mishrif Formation using interpreting data from five open-hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. Understanding reservoir properties allows for a more accurate assessment of recoverable oil reserves. The rock type (limestone) and permeability variations help tailor oil extraction methods, extraction methods and improving recovery techniques. The petrophysical properties were calculated using Interactive Petrophysics software (version 4.5), employing various methods such as density (RHOB), neutron porosity (NPHI), sonic, gamma-ray, resistivity, and caliper logs. The well logs were evaluated and adjusted based on the environmental conditions. The lithology of the formations was identified through Neutron-Density cross plots, which revealing a composition primarily of limestone. The optimum approach for calculating clay volume was the gamma ray method, which indicated approximately 10% clay content. For calibrating effective porosity with core data, the Neutron-Density method proved to be the most accurate, showed values between 12% and 14% in the MB unit. The Archie technique was selected for its compatibility with limestone. Formation water resistivity was estimated from analogies of the southern field of the Mishrif reservoir (RW=0.021). Permeability was calculated using the flow zone indicator method (FZI) with an average between 0.2 and 0.35 md. According to the petrophysical analysis conducted at Mishrif, the formation consists of four units: MA, MB1, MB2, and MC. The most significant hydrocarbon-bearing unit in the formation is MB1.The insights gained from this study not only enhance the understanding of the Mishrif Formation but also contribute to the development of more efficient extraction techniques and improved reservoir management strategies. By optimizing recovery methods based on precise petrophysical and lithological data, the study supports the sustainable and economically viable exploitation of hydrocarbon resources in the ROF and similar reservoirs worldwide. These findings are significant in the broader context of petroleum engineering and reservoir management, as they provide a foundation for improved recovery techniques and sustainable resource management.
Abstract
The purpose of our study was to develop Dabigatran Etexilate loaded nanostructured lipid carriers (DE-NLCs) using Glyceryl monostearate and Oleic acid as lipid matrix, and to estimate the potential of the developed delivery system to improve oral absorption of low bioavailability drug, different Oleic acid ratios effect on particle size, zeta potential, entrapment efficiency and loading capacity were studied, the optimized DE-NLCs shows a particle size within the nanorange, the zeta potential (ZP) was 33.81±0.73mV with drug entrapment efficiency (EE%) of 92.42±2.31% and a loading capacity (DL%) of 7.69±0.17%. about 92% of drug was released in 24hr in a controlled manner, the ex-vivo intestinal p
... Show MoreObjectives: To compare early pregnancy outcomes, including miscarriage, ectopic pregnancy, multiple pregnancy, and congenital anomalies, among women who conceived following ovulation induction with letrozole or clomiphene citrate. Methods: A prospective comparative observational study was conducted at Al-Elwiya Maternity Teaching Hospital and a private clinic in Baghdad, Iraq, from March 2023 to December 2024. One hundred infertile women aged 21–35 years who conceived after ovulation induction with either letrozole (5 mg/day) or clomiphene citrate (100 mg/day) for five days (cycle days 3–7) were enrolled. Participants were followed through early pregnancy with serial sonography at 6, 8–11, and 18–20 weeks of gestation. Data
... Show MoreAbstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.
The effects of nutrients and physical conditions on phytase production were investigated with a recently isolated strain of Aspergillus tubingensis SKA under solid state fermentation on wheat bran. The nutrient factors investigated included carbon source, nitrogen source, phosphate source and concentration, metal ions (salts) and the physical parameters investigated included inoculum size, pH, temperature and fermentation duration. Our investigations revealed that optimal productivity of phytase was achieved using wheat bran supplemented with: 1.5% glucose. 0.5% (NH4)2SO4, 0.1% sodium phytate. Additionally, optimal physical conditions were 1 × 105 spore/g substrate, initial pH of 5.0, temperature of fermentation 30˚C and fermentation dura
... Show MoreActivated carbon prepared from date stones by chemical activation with ferric chloride (FAC) was used an adsorbent to remove phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) from aqueous solutions. The influence of process variables represented by solution pH value (2-12), adsorbent to adsorbate weight ratio (0.2-1.8), and contact time (30-150 min) on removal percentage and adsorbed amount of Ph and PNPh onto FAC was studied. For PNPh adsorption,( 97.43 %) maximum removal percentage and (48.71 mg/g) adsorbed amount was achieved at (5) solution pH,( 1) adsorbent to adsorbate weight ratio, and (90 min) contact time. While for Ph adsorption, at (4) solution pH, (1.4) absorbent to adsorbate weight ratio, and (120 min) contact
... Show MoreAromatic Schiff-bases are known to have antibacterial activity, but most of these compounds are sparingly soluble in water. The present work describes the synthesis of new Schiff-bases derived from branched aminosugars. Treatment of 3-Amino-3-Cyano-3-Deoxy-1,2:5,6-Di-O-Isopropylene-α-D-Allofuranose (1) with the aldehydes (2) under reflux in methanol afforded the Schiff-bases (3) in good yields. The new Schiff-bases were in accord with their NMR, IR spectral data and elemental analysis.