The new Azo ligand and its metal complexes have been prepared and characterized The reaction of 4-nitroaniline and 2-hydroxy-1-naphthaldehyde in a 1: 1 mole ratio resulted in the synthesis of ((E)-2-hydroxy-3-((4-nitrophenyl) diazenyl)-1-naphthaldehyde)(HL). The separation of monomeric complexes was accomplished by reacting ((E)-2-hydroxy-3-((4-nitrophenyl) diazenyl)-1-naphthaldehyde)(HL) with Cr, Mn II, Co II, Ni II, and Cu II metal ions in a mole ratio of 2: 1 (L: M). Elemental microanalysis, magnetic susceptibility, conductance, FT-IR, electronic spectra, and 1 HNMR, 13 C-NMR, and mass spectra were among the analytical and spectroscopic techniques used to describe the products. Based on the data collected during the characterization process, six coordinates were determined. The ligand and its complexes were tested against certain bacteria and fungi. The findings acquired suggested that the metal complexes are more active against a variety of organisms have been studied as compared to the free ligand.
This paper performance for preparation and identification of six new complexes of a number of transition metals Cr (lII), Mn (I1), Fe (l), Co (II), Ni (I1), Cu (Il) with: N - (3,4,5-Trimethoxy phenyl-N - benzoyl Thiourea (TMPBT) as a bidentet ligand. The prepared complexes have been characterized, identified on the basis of elemental analysis (C.H.N), atomic absorption, molar conductivity, molar-ratio ,pH effect study, I. Rand UV spectra studies. The complexes have the structural formula ML2X3 for Cr (III), Fe (III), and ML2X2 for Mn (II), Ni (II), and MLX2 for Co (Il) , Cu (Il).
Doppler broadening technique is suggested to monitor the development of tumours. It depends on the sensitivity of positronium (Ps) annihilation parameters to the sub- microstructural changes in biological tissues. This technique uses high resolution HpGe detector to measure the lineshape parameters (S and W) in normal mice's mammary tissues and adenocarcinoma mammary tissues as a function of tumour growth. The results demonstrate that the central parameter (S) decreases and the wing parameter (W) increases as the tumour grow. It is found that the S parameter changes considerably with the distribution of voids which are affected by the tumour development. Therefore the present technique can successfully be employed to monitor the developm
... Show MoreBACKGROUND: Hepatocyte growth factor (HGF) is a proangiogenic factor that exerts different effects over stem cell survival growth, apoptosis, and adhesion. Its impact on leukemogenesis has been established by many studies. AIM: This study aimed to determine the effect of plasma HGF activity on acute myeloid leukemia (AML) patients at presentation and after remission. PATIENTS AND METHODS: This was a cross-sectional prospective study of 30 newly-diagnosed, adult, and AML patients. All patients received the 7+3 treatment protocol. Patients’ clinical data were taken at presentation, and patients were followed up for 6 months to evaluate the clinical status. Plasma HGF levels were estimated by ELISA based methods in the pa
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreSoil that has been contaminated by heavy metals is a serious environmental problem. A different approach for forecasting a variety of soil physical parameters is reflected spectroscopy is a low-cost, quick, and repeatable analytical method. The objectives of this paper are to predict heavy metal (Ti, Cr, Sr, Fe, Zn, Cu and Pb) soil contamination in central and southern Iraq using spectroscopy data. An XRF was used to quantify the levels of heavy metals in a total of 53 soil samples from Baghdad and ThiQar, and a spectrogram was used to examine how well spectral data might predict the presence of heavy metals metals. The partial least squares regression PLSR models performed well in pr
Spatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimati
... Show MoreIn this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the ar
... Show MoreAt atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot
... Show More