Preferred Language
Articles
/
9heKbI4BVTCNdQwCZUf2
Recycling of Waste Compact Discs in Concrete Mix: Lab Investigations and Artificial Neural Networks Modeling
...Show More Authors

This study aimed to investigate the incorporation of recycled waste compact discs (WCDs) powder in concrete mixes to replace the fine aggregate by 5%, 10%, 15% and 20%. Compared to the reference concrete mix, results revealed that using WCDs powder in concrete mixes improved the workability and the dry density. The results demonstrated that the compressive, flexural, and split tensile strengths values for the WCDs-modified concrete mixes showed tendency to increase above the reference mix. However, at 28 days curing age, the strengths values for WCDs-modified concrete mixes were comparable to those for the reference mix. The leaching test revealed that none of the WCDs constituents was detected in the leachant after 180 days. The findings of this study indicated a sustainable alternative for diminution the effects on the environment posed by waste CDs. Significant agreement between experimental results and those predicted by the artificial neural networks (ANN) modeling was observed.

Scopus Crossref
View Publication
Publication Date
Fri Nov 01 2019
Journal Name
Civil Engineering Journal
Experimental and Numerical Investigations of Composite Concrete–Steel Plate Shear Walls Subjected to Axial Load
...Show More Authors

This research is presented experimental and numerical investigations of composite concrete-steel plate shear walls under axial loads to predicate the effect of both concrete compressive strength and aspect ratio of the wall on the axial capacity, lateral displacement and axial shortening of the walls. The experimental program includes casting and testing two groups of walls with various aspect ratios. The first group with aspect ratio H/L=1.667 and the second group with aspect ratio H/L=2. Each group consists of three composite concrete -steel plate wall with three targets of cube compressive strength of values 39, 54.75 and 63.3 MPa. The tests result obtained that the increase in concrete compressive strength results in increasing

... Show More
Scopus (11)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Fri Aug 02 2024
Journal Name
Engineering, Technology & Applied Science Research
Contributory Factors related to the Tensile Strength of Hot Mix Asphalt Concrete
...Show More Authors

Tensile strength is a critical property of Hot Mix Asphalt (HMA) pavements and is closely related to distresses such as fatigue cracking. This study aims to evaluate methods for assessing fatigue cracking in Asphalt Concrete (AC) mixes. In order to achieve optimum density at different binder contents, the mixes were compressed using a gyratory compactor. Tensile strength was assessed using the Indirect Tensile (IDT) and Semi-Circular Bend (SCB) tests. The results showed that the tensile strength measured by the SCB test was consistently higher than that measured by the IDT test at 25 °C. In addition, the SCB test showed a stronger correlation between increasing binder content and tensile strength. For binder contents ranging from 4

... Show More
View Publication
Scopus Crossref
Publication Date
Sun May 01 2022
Journal Name
International Journal Of Multiphase Flow
Application of artificial neural network to predict slug liquid holdup
...Show More Authors

Publication Date
Mon Dec 24 2018
Journal Name
Civil Engineering Journal
Artificial Neural Network Model for the Prediction of Groundwater Quality
...Show More Authors

The present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be

... Show More
View Publication
Crossref (31)
Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Influence of Waste Concrete and Glass Recycled on the Strength Properties of Green Reactive Powder Concrete
...Show More Authors

These days, the world is facing a global environmental and sustainability problem due to the increasing generation of large amounts of waste through construction and demolition work, which causes a serious problem for the environment. Therefore, this research was conducted to get rid of the waste disposal problems, including old glass and concrete, which were used as recycled fine aggregates. Seven different mixtures were prepared. The first mixture was with the used sand, which is glass sand, and it was adopted as a reference mixture (ORPC), and three mixtures were prepared for each of the recycled materials (waste concrete and glass) and partially replaced by glass sand in different proportions (25, 50, and 75) %. Some

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects
...Show More Authors

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Effectiveness of Meso-Scale Approach in Modeling of Plain Concrete Beam
...Show More Authors

The main aim of this research paper is investigating the effectiveness and validity of Meso-Scale Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply supported plain concrete beam was subjected to two-point loading to detect the response in flexural. Experimentally, a concrete mix was designed and prepared to produce three similar standard concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of cement mortar and coarse aggregate. The interface between the two c

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (12)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Engineering, Technology & Applied Science Research
Producing Green Concrete with Plastic Waste and Nano Silica Sand
...Show More Authors

Abstract-Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste

... Show More