Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time of 240 min, 5 g/L of dosage, initial concentration of 25 mg/L, and a temperature of 45 °C. The removal percentage of TEC under the optimum condition was 96%. Thermodynamic analysis indicated that the removal efficiency was slightly increased with temperature depending on the positive value of Δ𝐻°, thus indicating that the adsorption phenomenon was endothermic. The Langmuir model fitted the study (R2 = 0.998), demonstrating that the adsorption sites were homogenous. The experimental results were best matched with the second-order kinetic model, implying that chemisorption was the primary process during the adsorption process. Compared to previous research and based on the value of qmax (15.60 mg/g), the biomass was suitable for TEC removal.
The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreThirty uropathogenic E. coli isolates were isolated from hospitalized and non hospitalized patients, complaining of urinary tract infections, of Al-Kadhymia Teaching Hospital and subjected to tRNA extraction. A method of tRNA extraction was modified by adding sodium dodecyl sulfate (SDS) instead of urea. Polyacrylamide gel electrophoresis and two methods of staining, ethidium bromide staining and silver staining, as well as spectrophotometric detection were used.
The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in
... Show MoreBiodiesel production process was attracted more attention recently due to the surplus quantity of glycerol (G) as a byproduct from the process. Glycerol Utilization must take in to consideration to fix this issue also, to ensure biodiesel industry sustainability. Highly amount of Glycerol converted to more benefit material Glycerol carbonate (GC) was one of the most allurement compound derived from glycerol by transesterification of glycerol with dimethyl carbonate (DMC). Various parameters have highly impact on transesterification was investigated like catalyst loading (1-5) %wt., molar ratio of DMC: glycerol (5:1 – 1:1), reaction time (30 - 150) min and temperature (40 – 80) ᴼC. The Optimum glycerol carbonate yie
... Show MoreThese days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce
... Show MoreIn this study, a proposed process for the utilization of hydrogen sulphide separated with other gases from omani natural gas for the production of sulphuric acid by wet sulphuric acid process (WSA) was studied. The processwas simulated at an acid gas feed flow of 5000 m3/hr using Aspen ONE- V7.1-HYSYS software. A sensitivity analysis was conducted to determine the optimum conditions for the operation of plant. This included primarily the threepacked bed reactors connected in series for the production of sulphur trioxidewhich represented the bottleneck of the process. The optimum feed temperature and catalyst bed volume for each reactor were estimated and then used in the simulation of the whole process for tw
... Show More