The use of credit cards for online purchases has significantly increased in recent years, but it has also led to an increase in fraudulent activities that cost businesses and consumers billions of dollars annually. Detecting fraudulent transactions is crucial for protecting customers and maintaining the financial system's integrity. However, the number of fraudulent transactions is less than legitimate transactions, which can result in a data imbalance that affects classification performance and bias in the model evaluation results. This paper focuses on processing imbalanced data by proposing a new weighted oversampling method, wADASMO, to generate minor-class data (i.e., fraudulent transactions). The proposed method is based on the Synthetic Minority Over-sampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and weight adjustment to identify specific minority areas while retaining data generalization and accurately identifying patterns associated with fraudulent transactions. Experimental results obtained from two datasets with Autoencoder (AE), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) learning models show that wADASMO surpasses other oversampling methods in three evaluation metrics: accuracy at 95.6%, 98.8%, and 99.2%; detection rate at 90.4%, 93.38%, and 93.38%; and area under the curve (AUC) at 93%, 96%, and 96.3% for AE, CNN, and LSTM models, respectively.
In the present study, the effect of new cross-section fin geometries on overall thermal/fluid performance had been investigated. The cross-section included the base original geometry of (triangular, square, circular, and elliptical pin fins) by adding exterior extra fins along the sides of the origin fins. The present extra fins include rectangular extra fin of 2 mm (height) and 4 mm (width) and triangular extra fin of 2 mm (base) 4 mm (height). The use of entropy generation minimization method (EGM) allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by con
... Show MoreThe increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show MoreIn this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
... Show MoreSurveillance cameras are video cameras used for the purpose of observing an area. They are often connected to a recording device or IP network, and may be watched by a security guard or law enforcement officer. In case of location have less percentage of movement (like home courtyard during night); then we need to check whole recorded video to show where and when that motion occur which are wasting in time. So this paper aims at processing the real time video captured by a Webcam to detect motion in the Scene using MATLAB 2012a, with keeping in mind that camera still recorded which means real time detection. The results show accuracy and efficiency in detecting motion
We propose a system to detect human faces in color images type BMP by using two methods RGB and YCbCr to determine which is the best one to be used, also determine the effect of applying Low pass filter, Contrast and Brightness on the image. In face detection we try to find the forehead from the binary image by scanning of the image that starts in the middle of the image then precedes by finding the continuous white pixel after continuous black pixel and the maximum width of the white pixel by scanning left and right vertically(sampled w) if the new width is half the previous one the scanning stops.
Eugenol is found in essential oils of many plants. It belongs to a class of naturally occurring phenolic monoterpenoids, chemically it is an allyl chain-substituted guaiacol. A study was conducted on the compound of Eugenol, which included different studies. The first study was the determination of eugenol in body fluid, which includes serum, saliva and urine has been found the highest concentration was in urine then serum and saliva. The second study was the hematological study. Complete blood count was accomplished on the volunteers alredy administrated with eugenol contained mouthwash the analysis was accomplished before and after the mouth wash use. The result observed a slightly negative results and was not that significant, wh
... Show MoreEnvironmental factors that damage plant cells by dehydrating them, such cold, drought, and high salinity, are the most common environmental stresses that have an impact on plant growth, development, and productivity in cultivated regions around the world. Several types of plants have several drought, salinity, and cold inducible genes that make them tolerant to environmental challenges. The purpose of this study was to investigate several species in
Image pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The
... Show More