The use of credit cards for online purchases has significantly increased in recent years, but it has also led to an increase in fraudulent activities that cost businesses and consumers billions of dollars annually. Detecting fraudulent transactions is crucial for protecting customers and maintaining the financial system's integrity. However, the number of fraudulent transactions is less than legitimate transactions, which can result in a data imbalance that affects classification performance and bias in the model evaluation results. This paper focuses on processing imbalanced data by proposing a new weighted oversampling method, wADASMO, to generate minor-class data (i.e., fraudulent transactions). The proposed method is based on the Synthetic Minority Over-sampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and weight adjustment to identify specific minority areas while retaining data generalization and accurately identifying patterns associated with fraudulent transactions. Experimental results obtained from two datasets with Autoencoder (AE), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) learning models show that wADASMO surpasses other oversampling methods in three evaluation metrics: accuracy at 95.6%, 98.8%, and 99.2%; detection rate at 90.4%, 93.38%, and 93.38%; and area under the curve (AUC) at 93%, 96%, and 96.3% for AE, CNN, and LSTM models, respectively.
This research mainly aims to analyze local development strategy in Baghdad Governance, build the Strategic Model based on the study area's spatial interaction, and achieve the Trinity of Excellence based on the global model of excellence.
This research applied SWOT strategic analysis for the strengths and weaknesses of the internal environment and opportunities and threats of the external environment for the provincial council. In conclusion, the research specifies appropriate alternatives and choosing the best in line with the reality of the Baghdad Provincial Council. Also, the strategic goals in the national plan and the spatial interaction of the development goals,
... Show MoreSurvival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete
... Show MoreThe importance of government Expenditure policy in economy come from its role leading to the mitigation and adjustment of fluctuations in macroeconomic variables caused by imbalance between aggregate demand and aggregate supply, It is associated with the efficient management of government Expenditure to reinforcement the relationship between government Expenditure and the overall economic system .
Regarding the Iraqi economy,the increasing in financial rentier after the political change in 2003 has led to finance the budgets Characterized by consumption,The government Expenditure employed to encourage government employment in services jobs, and find different channels for the distribution of
... Show MoreBiodiesel can be prepared from various types of vegetable oils or animal fats with the aid of a catalyst.
Calcium oxide (CaO) is one of the prospective heterogeneous catalysts for biodiesel synthesis. Modification
of CaO by impregnation on silica (SiO2) can improve the performance of CaO as catalyst. Egg shells and rice
husks as biomass waste can be used as raw materials for the preparation of the silica modified CaO catalyst.
The present study was directed to synthesize and characterize CaO impregnated SiO2 catalyst from biomass
waste and apply it as catalyst in biodiesel synthesis. The catalyst was synthesized by wet impregnation
method and characterized by x-ray diffraction, x-ray fluorescence, nitr
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show More