The use of credit cards for online purchases has significantly increased in recent years, but it has also led to an increase in fraudulent activities that cost businesses and consumers billions of dollars annually. Detecting fraudulent transactions is crucial for protecting customers and maintaining the financial system's integrity. However, the number of fraudulent transactions is less than legitimate transactions, which can result in a data imbalance that affects classification performance and bias in the model evaluation results. This paper focuses on processing imbalanced data by proposing a new weighted oversampling method, wADASMO, to generate minor-class data (i.e., fraudulent transactions). The proposed method is based on the Synthetic Minority Over-sampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and weight adjustment to identify specific minority areas while retaining data generalization and accurately identifying patterns associated with fraudulent transactions. Experimental results obtained from two datasets with Autoencoder (AE), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) learning models show that wADASMO surpasses other oversampling methods in three evaluation metrics: accuracy at 95.6%, 98.8%, and 99.2%; detection rate at 90.4%, 93.38%, and 93.38%; and area under the curve (AUC) at 93%, 96%, and 96.3% for AE, CNN, and LSTM models, respectively.
The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
This study is carried out to investigate the prevalence of Coxiella burnetii (C. burnetii) infections in cattle using an enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assay targeting IS1111A transposase gene. A total of 130 lactating cows were randomly selected from different areas in Wasit province, Iraq and subjected to blood and milk sampling during the period extended between November 2018 and May 2019. ELISA and PCR tests revealed that 16.15% and 10% of the animals studied were respectively positive. Significant correlations (P<0.05) were detected between the positive results and clinical data. Two positive PCR products were analyzed phylogenetically, named as C. burnetii IQ-No.5 and C. burnet
... Show MoreThe main target of the current study is to investigate the microbial content and mineral contaminants of the imported meat available in the city of Baghdad and to ensure that it is free from harmful bacteria, safe and it compliances with the Iraqi standard specifications. Some trace mineral elements such as (Iron, Copper, Lead, and Cadmium) were also estimated, where 10 brands of these meats were collected. Bacteriological tests were carried out which included (total bacterial count,
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreMany patients with advanced type 2 diabetes mellitus (T2DM) and all patients with T1DM require insulin to keep blood glucose levels in the target range. The most common route of insulin administration is subcutaneous insulin injections. There are many ways to deliver insulin subcutaneously, such as vials and syringes, insulin pens, and insulin pumps. Though subcutaneous insulin delivery is the standard route of insulin administration, it is associated with injection pain, needle phobia, lipodystrophy, noncompliance, and peripheral hyperinsulinemia. Therefore, the need exists to deliver insulin in a minimally invasive or noninvasive way and in the most physiological way. Inhaled insulin was the first approved noninvasive and alternative way
... Show MoreThree complexes of copper(II) and iron(II) with mixed ligands acetylacetonebis(thio-semicarbazone)- ABTSH2 and benzaldazine- BA have been prepared and characterized using different physico-chemical techniques including the determination of metal contents, mole-cular weight, measurement of molar conductivity, magnetic moment, molar refraction, infrared and electronic spectra. Accordingly, octahedral complexes having general formulaes [Cu2(ABTSH2)2(BA)2Cl2]Cl2 and [M2(ABTSH2)2(BA)2(SO4)2] {M= Cu(II) or (Fe(II)} have been proposed. The resulted complexes screened for antifungal activity in vitro against the citrus pathogen Aspergillus niger and Fusarium sp. which caused root rot of sugar and the beans pathogen Alternaria sp. All the complex
... Show MoreThe reaction of some new Schiff bases ( 2-[(2-Amino – ethylimino)-methyl]-R , 2-({2-[(R-benzylidene)-amino]-ethylimino}-methyl)-R with Benzoyl chloride or Acetyl chloride were carried out. Subsequent reactions of these products N-(2-Amino-ethyl)-N-[Chloro-(R) –methyl]-benzamide or N-(2-{?-[chloro-(R) –methyl]-amino}-ethyl)-N-[chloro-(R) –methyl]- benzamide with thiourea afforded thioureas compounds. The synthesized compounds were confirmed by their IR,UV,spectra and C.H.N. analysis.