Refractories are mineral and chemical-, based, materials with excellent heat resistance, making them ideal for use in the construction of ovens, furnace walls industries. According to this our research is concerned to study the effect of addition of (4% CaO) and (5% graphite) on the silica brick properties. Different amounts of CaO and Graphite were included in the white sand (raw ingredients) of silica bricks as a binder to prepare the composition then the composition were sintered using Different sintering temperatures ranging from (1000–1400)𝛐C under static air. Density, thermal conductivity, porosity, and water absorption Compression there was power tested after sintering. XRD analysis was used to identify raw materials’ physical, chemical, and mechanical qualities, as well as their mineralogical composition. Addition of Graphite to the firebrick mixture increased the challenges of getting good densification out of firebrick specimens with enhancement of the compressive, strength, bulk density especially at low firing temperatures since it increases formation of glassy phase as compared with 4%CaO, Addition of 4% CaO to silica brick the density of firebrick decreased, and the porosity and water absorption increased. Thermal conductivity of firebrick is decreased for 5% Graphite in comparison with 4% CaO to produce refractory silica brick with high quality of heat resistance, making them ideal for use in the construction of ovens, furnace walls industries.
Inthis investigation the epoxy was reinforced by orange peel and carbonized orange peel particles with percentages (5%, 10%, 15% and 20% by weight).Mechanical tests like:Tensile, flexural,Hardness, impact and compression were carried out on these natural epoxy composites. The results showed the tensile strength have a higher value by adding (15% by weight )of orange peel and carbonized orange peel particles to epoxy,while the value (10% by weight ) of addition is suitable to get improvement in the other mechanical properties as flexural strength, Hardness, impact and compressive strength. The epoxy / carbonized orange peel powder have the best valuesin all mechanical properties than t
Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding betwee
... Show MoreThe effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show MoreAbstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b
... Show MoreThe present researchers are trying to enhance the properties of paper sheet that used widely in many fields such as printing and packaging. The enhancement of paper quality is also possible to preserve paper documents of all kinds, as they are the true record, full of the history, achievements of the human being and the intellectual and cultural of the country. It is possible to improve its physical and mechanical properties and preserve them from damage through the use of some solutions of polymeric adhesives, which act as protective barriers against water and moisture penetration. The paper also has the advantage of porosity, which has been overcome by using three types of polymeric adhesives (Nitro Cellulose, Polyvinyl alcohol acetate, a
... Show MoreAlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low
... Show MoreA new metal complexes are made from the ligands derived from amoxicillin based Schiff's base coordinated with Pd(II) and Co(II) have been synthesized and characterized via different spectroscopic methods. FT-IR spectroscopy have shown a formation of tetrahedral and square planar geometry for Co(II) and Pd(II) complexes, respectively. Surface morphology was inspected via field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The Brunauer–Emmett–Teller surface area of the metal complexes samples is about 6.63 to 8.71 m2/g, with pore diameters and volume of 0.030–0.0501 cm3/g and 18.39–22.98 nm, respectively. The quadrupo
Thin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transi
... Show More