Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing items in images. This article, will be focusing on comparing the main differences among the YOLO version's Architecture, and will discuss its evolution from YOLO to YOLOv8, its network architecture, new features, and applications. And starts by looking at the basic ideas and design of the first YOLO model, which laid the groundwork for the following improvements in the YOLO family. In additionally, this article will provide a step-by-step guide on how to use the YOLO version architecture, Understanding the primary drivers, feature development, constraints, and even relationships for the versions is crucial as the YOLO versions advance. Researchers interested in object detection, especially beginning researchers, would find this paper useful and enlightening.
In the last decades, using mineral admixture in concrete became very necessary to improve concrete properties and reduce CO2 emissions associated with the cement production process. Subsequently, more sustainable concrete can be obtained. Ternary blended cement containing two different types of mineral admixture can achieve ambitious steps in this trend. In this research, the synergic effects of mineral admixtures in ternary blended cement and its effects on concrete fresh properties, strength, durability, and efficiency factors of mineral admixture in ternary blended cement, were reviewed. The main conclusion reached after reviewing many literature pieces is that the concrete with ternary blended cement
... Show MoreTrimethoprim derivative Schiff bases are versatile ligands synthesized with carbonyl groups from the condensation of primary amines (amino acids). Because of their broad range of biological activity, these compounds are very important in the medical and pharmaceutical fields. Biological activities such as antibacterial, antifungal and antitumor activity are often seen. Transition metal complexes derived from biological activity Schiff base ligands have been commonly used.
Solvents are important components in the pharmaceutical and chemical industries, and they are increasingly being used in catalytic reactions. Solvents have a significant influence on the kinetics and thermodynamics of reactions, and they can significantly change product selectivity. Solvents can influence product selectivity, conversion rates, and reaction rates. However, solvents have received a lot of attention in the field of green chemistry. This is due to the large amount of solvent that is frequently used in a process or formulation, particularly during the purification steps. However, neither the solvent nor the active ingredient in a formulation is directly responsible for the reaction product's composition. Because these ch
... Show MoreForeign direct investment (FDI) has been viewed as a power affecting economic growth (EG) directly and indirectly during the past few decades. This paper reviewed an amount of researches examining the relationships between FDI and EG, especially the effects of FDI on EG, from 1994 up to 2012. The results show that the main finding of the FDI-EG relation is significantly positive, but in some cases it is negative or even null. And within the relation, there exist several influencing factors such as the adequate levels of human capital, the well-developed financial markets, the complementarity between domestic and foreign investment and the open trade regimes, etc.
Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show More