Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a type of stochastic optimization technique that has proven effective in solving various problems. The results of the study show significant improvements in NPV when using genetic algorithms compared to traditional methods, particularly for problems with numerous decision variables. The findings suggest that genetic algorithms are a promising tool for optimizing well placement in oil field development, improving NPV, and reducing the risk of project failure.
The auditory system can suffer from exposure to loud noise and human health can be affected. Traffic noise is a primary contributor to noise pollution. To measure the noise levels, 3 variables were examined at 25 locations. It was found that the main factors that determine the increase in noise level are traffic volume, vehicle speed, and road functional class. The data have been taken during three different periods per day so that they represent and cover the traffic noise of the city during heavy traffic flow conditions. Analysis of traffic noise prediction was conducted using a simple linear regression model to accurately predict the equivalent continuous sound level. The difference between the predicted and the measured noise shows that
... Show MoreThis paper performance for preparation and identification of six new complexes of a number of transition metals Cr (lII), Mn (I1), Fe (l), Co (II), Ni (I1), Cu (Il) with: N - (3,4,5-Trimethoxy phenyl-N - benzoyl Thiourea (TMPBT) as a bidentet ligand. The prepared complexes have been characterized, identified on the basis of elemental analysis (C.H.N), atomic absorption, molar conductivity, molar-ratio ,pH effect study, I. Rand UV spectra studies. The complexes have the structural formula ML2X3 for Cr (III), Fe (III), and ML2X2 for Mn (II), Ni (II), and MLX2 for Co (Il) , Cu (Il).
Heat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.