Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a type of stochastic optimization technique that has proven effective in solving various problems. The results of the study show significant improvements in NPV when using genetic algorithms compared to traditional methods, particularly for problems with numerous decision variables. The findings suggest that genetic algorithms are a promising tool for optimizing well placement in oil field development, improving NPV, and reducing the risk of project failure.
Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreWith the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
Background:Open reduction and internal fixation (ORIF) of using miniplates and screws is the treatment of choice of mandibular fractures. It is important to know both: the region where the bone providesafirm anchorage, andthe topography of the dental apices and inferior alveolar nerve to avoiddamaging them when inserting the screw. The aim of this study is to determine the thickness of buccal cortical plate and that of buccal bone at the parasymphysis and mandibular body, thereby determining the area that provide afirm anchorage and the maximum length of mono-cortical screws that can be safely placed in these regions without injuring the tooth roots or mandibular nerve. Materials and Methods:The sample of the present study was 110 Iraqi sub
... Show MoreThe objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
Abstract
Objectives: The main objective of this study is to find the influence level of nursing incivility on psychological well-being among nurses in southeastern Iraq.
Methods: In this descriptive correlational study, a convenience sample of 250 nurses working in three government hospitals in Missan province in the south of Iraq were surveyed using the nursing incivility scale (NIS) and Ryff's psychological well-being scale (PWB) from November 2021, to July 2022. A multivariate multiple regression analysis was done to analyze the multivariate effect of workplace incivility on the psychological well-being of nurses.
Results: The study results show a
... Show MoreThe performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization design (CRD), with three replicates for each treatment at th
... Show MoreThe performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization des